Cargando…
Pancreatic PYY but not PPY expression is responsive to short-term nutritional state and the pancreas constitutes the major site of PYY mRNA expression in chickens
PP-fold peptides such as peptide YY (PYY) and pancreatic polypeptide (PPY) are known to play key roles in vertebrate energy homeostasis. Until recently, no gene sequence was available for avian PYY and therefore a gap in knowledge of regulation of its expression exists in avian species. Here we furt...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576917/ https://www.ncbi.nlm.nih.gov/pubmed/28694054 http://dx.doi.org/10.1016/j.ygcen.2017.07.002 |
Sumario: | PP-fold peptides such as peptide YY (PYY) and pancreatic polypeptide (PPY) are known to play key roles in vertebrate energy homeostasis. Until recently, no gene sequence was available for avian PYY and therefore a gap in knowledge of regulation of its expression exists in avian species. Here we further evidence the mRNA sequence for chicken PYY and show that the pancreas is the major site of its mRNA expression, with a secondary peak of expression around the distal jejunum, in contrast to mammals where the large intestine is the major site of PYY expression. We also demonstrate that pancreatic PYY expression is responsive to short-term and long-term nutritional state, increasing within hours of feeding, in contrast to intestinal PYY which does not fluctuate to the same extent, and pancreatic PPY which appears to be primarily determined by long-term energy state. Both pancreatic PYY and PPY expression were found to exhibit ontogeny, being evenly distributed throughout the pancreas in young (2wk) chicks but having a decreasing splenic to duodenal gradient by adolescence (12wk). |
---|