Cargando…
Convolutional auto-encoder for image denoising of ultra-low-dose CT
OBJECTIVES: The purpose of this study was to validate a patch-based image denoising method for ultra-low-dose CT images. Neural network with convolutional auto-encoder and pairs of standard-dose CT and ultra-low-dose CT image patches were used for image denoising. The performance of the proposed met...
Autores principales: | Nishio, Mizuho, Nagashima, Chihiro, Hirabayashi, Saori, Ohnishi, Akinori, Sasaki, Kaori, Sagawa, Tomoyuki, Hamada, Masayuki, Yamashita, Tatsuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577435/ https://www.ncbi.nlm.nih.gov/pubmed/28920094 http://dx.doi.org/10.1016/j.heliyon.2017.e00393 |
Ejemplares similares
-
Convolutional neural networks: an overview and application in radiology
por: Yamashita, Rikiya, et al.
Publicado: (2018) -
Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder
por: Yan, Xiaoan, et al.
Publicado: (2021) -
Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
por: Wang, Bokun, et al.
Publicado: (2022) -
Denoising Convolutional Networks to Accelerate Detector Simulation
por: Banerjee, Sunanda, et al.
Publicado: (2021) -
Denoising Convolutional Networks to Accelerate Detector Simulation
por: Banerjee, Sunanda, et al.
Publicado: (2022)