Cargando…
An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva
Animal behaviour often comprises spatially separated sub-reactions and even ciliated larvae are able to coordinate sub-reactions of complex behaviours (metamorphosis, feeding). How these sub-reactions are coordinated is currently not well understood. Neuropeptides are potential candidates for trigge...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577450/ https://www.ncbi.nlm.nih.gov/pubmed/28835571 http://dx.doi.org/10.1098/rsob.170136 |
_version_ | 1783260355338698752 |
---|---|
author | Thiel, Daniel Bauknecht, Philipp Jékely, Gáspár Hejnol, Andreas |
author_facet | Thiel, Daniel Bauknecht, Philipp Jékely, Gáspár Hejnol, Andreas |
author_sort | Thiel, Daniel |
collection | PubMed |
description | Animal behaviour often comprises spatially separated sub-reactions and even ciliated larvae are able to coordinate sub-reactions of complex behaviours (metamorphosis, feeding). How these sub-reactions are coordinated is currently not well understood. Neuropeptides are potential candidates for triggering larval behaviour. However, although their immunoreactivity has been widely analysed, their function in trochozoan larvae has only been studied for a few cases. Here, we investigate the role of neuropeptides in the defence behaviour of brachiopod larvae. When mechanically disturbed, the planktonic larvae of Terebratalia transversa protrude their stiff chaetae and sink down slowly. We identified endogenous FLRFamide-type neuropeptides (AFLRFamide and DFLRFamide) in T. transversa larvae and show that the protrusion of the chaetae as well as the sinking reaction can both be induced by each of these peptides. This also correlates with the presence of FLRFamidergic neurons in the apical lobe and adjacent to the trunk musculature. We deorphanized the AFLRFamide/DFLRFamide receptor and detected its expression in the same tissues. Furthermore, the ability of native and modified FLRFamide-type peptides to activate this receptor was found to correspond with their ability to trigger behavioural responses. Our results show how FLRFamide-type neuropeptides can induce two coherent sub-reactions in a larva with a simple nervous system. |
format | Online Article Text |
id | pubmed-5577450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-55774502017-08-31 An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva Thiel, Daniel Bauknecht, Philipp Jékely, Gáspár Hejnol, Andreas Open Biol Research Animal behaviour often comprises spatially separated sub-reactions and even ciliated larvae are able to coordinate sub-reactions of complex behaviours (metamorphosis, feeding). How these sub-reactions are coordinated is currently not well understood. Neuropeptides are potential candidates for triggering larval behaviour. However, although their immunoreactivity has been widely analysed, their function in trochozoan larvae has only been studied for a few cases. Here, we investigate the role of neuropeptides in the defence behaviour of brachiopod larvae. When mechanically disturbed, the planktonic larvae of Terebratalia transversa protrude their stiff chaetae and sink down slowly. We identified endogenous FLRFamide-type neuropeptides (AFLRFamide and DFLRFamide) in T. transversa larvae and show that the protrusion of the chaetae as well as the sinking reaction can both be induced by each of these peptides. This also correlates with the presence of FLRFamidergic neurons in the apical lobe and adjacent to the trunk musculature. We deorphanized the AFLRFamide/DFLRFamide receptor and detected its expression in the same tissues. Furthermore, the ability of native and modified FLRFamide-type peptides to activate this receptor was found to correspond with their ability to trigger behavioural responses. Our results show how FLRFamide-type neuropeptides can induce two coherent sub-reactions in a larva with a simple nervous system. The Royal Society 2017-08-23 /pmc/articles/PMC5577450/ /pubmed/28835571 http://dx.doi.org/10.1098/rsob.170136 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Thiel, Daniel Bauknecht, Philipp Jékely, Gáspár Hejnol, Andreas An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva |
title | An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva |
title_full | An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva |
title_fullStr | An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva |
title_full_unstemmed | An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva |
title_short | An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva |
title_sort | ancient fmrfamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577450/ https://www.ncbi.nlm.nih.gov/pubmed/28835571 http://dx.doi.org/10.1098/rsob.170136 |
work_keys_str_mv | AT thieldaniel anancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva AT bauknechtphilipp anancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva AT jekelygaspar anancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva AT hejnolandreas anancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva AT thieldaniel ancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva AT bauknechtphilipp ancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva AT jekelygaspar ancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva AT hejnolandreas ancientfmrfamiderelatedpeptidereceptorpairinducesdefencebehaviourinabrachiopodlarva |