Cargando…
Human Leukocyte Antigen C*12:02:02 and Killer Immunoglobulin-Like Receptor 2DL5 are Distinctly Associated with Ankylosing Spondylitis in the Taiwanese
Human leukocyte antigen (HLA) class I ligands and Killer immunoglobulin-like receptors (KIRs) regulate the cytolytic activity of natural killer (NK) cells and certain T cells. We examined their genetic predisposition to disease susceptibility and clinical phenotypes in Taiwanese ankylosing spondylit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578164/ https://www.ncbi.nlm.nih.gov/pubmed/28812990 http://dx.doi.org/10.3390/ijms18081775 |
Sumario: | Human leukocyte antigen (HLA) class I ligands and Killer immunoglobulin-like receptors (KIRs) regulate the cytolytic activity of natural killer (NK) cells and certain T cells. We examined their genetic predisposition to disease susceptibility and clinical phenotypes in Taiwanese ankylosing spondylitis (AS) patients. KIR genotyping and Human Leucocyte Antigen C (HLA-C) sequencing were performed in 653 Taiwanese AS patients and 952 healthy controls. KIR genotype distributions and HLA-C allele frequencies were compared in patients and controls and among patients with and without HLA-B27 positivity, early age onset and spinal syndesmophytes. HLA-C alleles were functionally characterized using 3D structural modelling with peptide simulation. This study discovered that the HLA-C*12:02:02 allele (43.42% vs. 3.31%; p < 0.00001 odds ratio (OR), 16.88; 95% confidence intervals (CI): 11.27–25.28) confers a strong risk for Taiwanese AS development. The 3D modelling results identified four unique amino acid polymorphisms, Ala73, Trp156, Arg219 and Met304, that may affect the function of the HLA-C*12:02:02 allele. KIR2DL5 (p = 0.0047; p(FDR) = 0.0423) and the KIR Bx haplotype (p = 0.0000275) were protective against Taiwanese AS, while KIR 2DS4/1D (22 base pair truncated deletion; p = 0.0044; p(FDR) = 0.1998) appeared to be a risk factor for it. KIR2DL5 combined with the HLA-C1/C2 heterozygous genotype showed a protective effect (AS 5.97% vs. normal 11.66%; p = 0.002; p(FDR) = 0.0127, OR, 0.48 95% CI: 0.33–0.70); in contrast, KIR 2DS4/1D combined with the HLA-C1C1 homozygous genotype (AS 45.33% vs. normal 35.92%; p = 0.002; p(FDR) = 0.0127, OR, 1.48 95% CI: 1.21–1.81) represented a risk factor for AS development. Our data suggested that interactions between KIRs and their cognate HLA-C ligands may contribute to the pathogenesis of AS. |
---|