Cargando…

Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process

Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanic...

Descripción completa

Detalles Bibliográficos
Autores principales: Kostecki, Marek, Woźniak, Jarosław, Cygan, Tomasz, Petrus, Mateusz, Olszyna, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578294/
https://www.ncbi.nlm.nih.gov/pubmed/28796172
http://dx.doi.org/10.3390/ma10080928
Descripción
Sumario:Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime.