Cargando…
Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis
Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the result...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578488/ https://www.ncbi.nlm.nih.gov/pubmed/28859082 http://dx.doi.org/10.1371/journal.pcbi.1005670 |
_version_ | 1783260539432992768 |
---|---|
author | Thaler, Lore Reich, Galen M. Zhang, Xinyu Wang, Dinghe Smith, Graeme E. Tao, Zeng Abdullah, Raja Syamsul Azmir Bin. Raja Cherniakov, Mikhail Baker, Christopher J. Kish, Daniel Antoniou, Michail |
author_facet | Thaler, Lore Reich, Galen M. Zhang, Xinyu Wang, Dinghe Smith, Graeme E. Tao, Zeng Abdullah, Raja Syamsul Azmir Bin. Raja Cherniakov, Mikhail Baker, Christopher J. Kish, Daniel Antoniou, Michail |
author_sort | Thaler, Lore |
collection | PubMed |
description | Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the resultant sound through the ear. Existing head-related transfer function (HRTF) data bases provide descriptions of reception of the resultant sound. For the current report, we collected a large database of click emissions with three blind people expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the spatial distribution (i.e. beam pattern) of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Our data show that transmission levels are fairly constant within a 60° cone emanating from the mouth, but levels drop gradually at further angles, more than for speech. In terms of spectro-temporal features, our data show that emissions are consistently very brief (~3ms duration) with peak frequencies 2-4kHz, but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our measurements we propose to model transmissions as sum of monotones modulated by a decaying exponential, with angular attenuation by a modified cardioid. We provide model parameters for each echolocator. These results are a step towards developing computational models of human biosonar. For example, in bats, spatial and spectro-temporal features of emissions have been used to derive and test model based hypotheses about behaviour. The data we present here suggest similar research opportunities within the context of human echolocation. Relatedly, the data are a basis to develop synthetic models of human echolocation that could be virtual (i.e. simulated) or real (i.e. loudspeaker, microphones), and which will help understanding the link between physical principles and human behaviour. |
format | Online Article Text |
id | pubmed-5578488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55784882017-09-15 Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis Thaler, Lore Reich, Galen M. Zhang, Xinyu Wang, Dinghe Smith, Graeme E. Tao, Zeng Abdullah, Raja Syamsul Azmir Bin. Raja Cherniakov, Mikhail Baker, Christopher J. Kish, Daniel Antoniou, Michail PLoS Comput Biol Research Article Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the resultant sound through the ear. Existing head-related transfer function (HRTF) data bases provide descriptions of reception of the resultant sound. For the current report, we collected a large database of click emissions with three blind people expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the spatial distribution (i.e. beam pattern) of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Our data show that transmission levels are fairly constant within a 60° cone emanating from the mouth, but levels drop gradually at further angles, more than for speech. In terms of spectro-temporal features, our data show that emissions are consistently very brief (~3ms duration) with peak frequencies 2-4kHz, but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our measurements we propose to model transmissions as sum of monotones modulated by a decaying exponential, with angular attenuation by a modified cardioid. We provide model parameters for each echolocator. These results are a step towards developing computational models of human biosonar. For example, in bats, spatial and spectro-temporal features of emissions have been used to derive and test model based hypotheses about behaviour. The data we present here suggest similar research opportunities within the context of human echolocation. Relatedly, the data are a basis to develop synthetic models of human echolocation that could be virtual (i.e. simulated) or real (i.e. loudspeaker, microphones), and which will help understanding the link between physical principles and human behaviour. Public Library of Science 2017-08-31 /pmc/articles/PMC5578488/ /pubmed/28859082 http://dx.doi.org/10.1371/journal.pcbi.1005670 Text en © 2017 Thaler et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Thaler, Lore Reich, Galen M. Zhang, Xinyu Wang, Dinghe Smith, Graeme E. Tao, Zeng Abdullah, Raja Syamsul Azmir Bin. Raja Cherniakov, Mikhail Baker, Christopher J. Kish, Daniel Antoniou, Michail Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis |
title | Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis |
title_full | Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis |
title_fullStr | Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis |
title_full_unstemmed | Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis |
title_short | Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis |
title_sort | mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578488/ https://www.ncbi.nlm.nih.gov/pubmed/28859082 http://dx.doi.org/10.1371/journal.pcbi.1005670 |
work_keys_str_mv | AT thalerlore mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT reichgalenm mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT zhangxinyu mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT wangdinghe mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT smithgraemee mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT taozeng mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT abdullahrajasyamsulazmirbinraja mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT cherniakovmikhail mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT bakerchristopherj mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT kishdaniel mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis AT antonioumichail mouthclicksusedbyblindexperthumanecholocatorssignaldescriptionandmodelbasedsignalsynthesis |