Cargando…
Reservoir Computing Beyond Memory-Nonlinearity Trade-off
Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven dynamical system, in particular harnessing common-signal-induced synchronization which is a widely observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can be e...
Autores principales: | Inubushi, Masanobu, Yoshimura, Kazuyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579006/ https://www.ncbi.nlm.nih.gov/pubmed/28860513 http://dx.doi.org/10.1038/s41598-017-10257-6 |
Ejemplares similares
-
Optofluidic memory and self-induced nonlinear optical phase change for reservoir computing in silicon photonics
por: Gao, Chengkuan, et al.
Publicado: (2023) -
A refined information processing capacity metric allows an in-depth analysis of memory and nonlinearity trade-offs in neurocomputational systems
por: Schulte to Brinke, Tobias, et al.
Publicado: (2023) -
Chunking as the result of an efficiency computation trade-off
por: Ramkumar, Pavan, et al.
Publicado: (2016) -
Life History Trade-Offs and Relaxed Selection Can Decrease Bacterial Virulence in Environmental Reservoirs
por: Mikonranta, Lauri, et al.
Publicado: (2012) -
Computation and storage in the cloud: understanding the trade-offs
por: Yuan, Dong, et al.
Publicado: (2013)