Cargando…
Object recognition and localization from 3D point clouds by maximum-likelihood estimation
We present an algorithm based on maximum-likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike ‘interest point’-based algorithms which normally discard such data. Compare...
Autores principales: | Dantanarayana, Harshana G., Huntley, Jonathan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579071/ https://www.ncbi.nlm.nih.gov/pubmed/28878956 http://dx.doi.org/10.1098/rsos.160693 |
Ejemplares similares
-
Efficient 3D Objects Recognition Using Multifoveated Point Clouds
por: Oliveira, Fabio F., et al.
Publicado: (2018) -
Efficient 3D Object Recognition from Cluttered Point Cloud
por: Li, Wei, et al.
Publicado: (2021) -
Maximum Sum of Evidence—An Evidence-Based Solution to Object Pose Estimation in Point Cloud Data
por: Phillips, Tyson, et al.
Publicado: (2021) -
Maximum Penalized Likelihood Estimation
por: LaRiccia, Vincent N, et al.
Publicado: (2009) -
Maximum likelihood estimation of functional relationships
por: Nagelkerke, Nico J D
Publicado: (1992)