Cargando…

The in situ synthesis of PbS nanocrystals from lead(II) n-octylxanthate within a 1,3-diisopropenylbenzene–bisphenol A dimethacrylate sulfur copolymer

The synthesis of lead sulfide nanocrystals within a solution processable sulfur ‘inverse vulcanization’ polymer thin film matrix was achieved from the in situ thermal decomposition of lead(II) n-octylxanthate, [Pb(S(2)COOct)(2)]. The growth of nanocrystals within polymer thin films from single-sourc...

Descripción completa

Detalles Bibliográficos
Autores principales: McNaughter, P. D., Bear, J. C., Mayes, A. G., Parkin, I. P., O'Brien, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579102/
https://www.ncbi.nlm.nih.gov/pubmed/28878986
http://dx.doi.org/10.1098/rsos.170383
Descripción
Sumario:The synthesis of lead sulfide nanocrystals within a solution processable sulfur ‘inverse vulcanization’ polymer thin film matrix was achieved from the in situ thermal decomposition of lead(II) n-octylxanthate, [Pb(S(2)COOct)(2)]. The growth of nanocrystals within polymer thin films from single-source precursors offers a faster route to networks of nanocrystals within polymers when compared with ex situ routes. The ‘inverse vulcanization’ sulfur polymer described herein contains a hybrid linker system which demonstrates high solubility in organic solvents, allowing solution processing of the sulfur-based polymer, ideal for the formation of thin films. The process of nanocrystal synthesis within sulfur films was optimized by observing nanocrystal formation by X-ray photoelectron spectroscopy and X-ray diffraction. Examination of the film morphology by scanning electron microscopy showed that beyond a certain precursor concentration the nanocrystals formed were not only within the film but also on the surface suggesting a loading limit within the polymer. We envisage this material could be used as the basis of a new generation of materials where solution processed sulfur polymers act as an alternative to traditional polymers.