Cargando…
A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates
A generalized solution procedure is developed for in-plane free vibration of rectangular and annular sectorial plates with general boundary conditions. For the annular sectorial plate, the introduction of a logarithmic radial variable simplifies the basic theory and the expression of the total energ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579111/ https://www.ncbi.nlm.nih.gov/pubmed/28878995 http://dx.doi.org/10.1098/rsos.170484 |
_version_ | 1783260642405253120 |
---|---|
author | Bao, Siyuan Wang, Shuodao |
author_facet | Bao, Siyuan Wang, Shuodao |
author_sort | Bao, Siyuan |
collection | PubMed |
description | A generalized solution procedure is developed for in-plane free vibration of rectangular and annular sectorial plates with general boundary conditions. For the annular sectorial plate, the introduction of a logarithmic radial variable simplifies the basic theory and the expression of the total energy. The coordinates, geometric parameters and potential energy for the two different shapes are organized in a unified framework such that a generalized solving procedure becomes feasible. By using the improved Fourier–Ritz approach, the admissible functions are formulated in trigonometric form, which allows the explicit assembly of global mass and stiffness matrices for both rectangular and annular sectorial plates, thereby making the method computationally effective, especially when analysing annular sectorial plates. Moreover, the improved Fourier expansion eliminates the potential discontinuity of the original normal and tangential displacement functions and their derivatives in the entire domain, and accelerates the convergence. The generalized Fourier–Ritz approach for both shapes has the characteristics of generality, accuracy and efficiency. These features are demonstrated via a few numerical examples. |
format | Online Article Text |
id | pubmed-5579111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-55791112017-09-06 A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates Bao, Siyuan Wang, Shuodao R Soc Open Sci Engineering A generalized solution procedure is developed for in-plane free vibration of rectangular and annular sectorial plates with general boundary conditions. For the annular sectorial plate, the introduction of a logarithmic radial variable simplifies the basic theory and the expression of the total energy. The coordinates, geometric parameters and potential energy for the two different shapes are organized in a unified framework such that a generalized solving procedure becomes feasible. By using the improved Fourier–Ritz approach, the admissible functions are formulated in trigonometric form, which allows the explicit assembly of global mass and stiffness matrices for both rectangular and annular sectorial plates, thereby making the method computationally effective, especially when analysing annular sectorial plates. Moreover, the improved Fourier expansion eliminates the potential discontinuity of the original normal and tangential displacement functions and their derivatives in the entire domain, and accelerates the convergence. The generalized Fourier–Ritz approach for both shapes has the characteristics of generality, accuracy and efficiency. These features are demonstrated via a few numerical examples. The Royal Society Publishing 2017-08-16 /pmc/articles/PMC5579111/ /pubmed/28878995 http://dx.doi.org/10.1098/rsos.170484 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Engineering Bao, Siyuan Wang, Shuodao A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates |
title | A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates |
title_full | A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates |
title_fullStr | A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates |
title_full_unstemmed | A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates |
title_short | A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates |
title_sort | generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates |
topic | Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579111/ https://www.ncbi.nlm.nih.gov/pubmed/28878995 http://dx.doi.org/10.1098/rsos.170484 |
work_keys_str_mv | AT baosiyuan ageneralizedsolutionprocedureforinplanefreevibrationofrectangularplatesandannularsectorialplates AT wangshuodao ageneralizedsolutionprocedureforinplanefreevibrationofrectangularplatesandannularsectorialplates AT baosiyuan generalizedsolutionprocedureforinplanefreevibrationofrectangularplatesandannularsectorialplates AT wangshuodao generalizedsolutionprocedureforinplanefreevibrationofrectangularplatesandannularsectorialplates |