Cargando…

K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines

Advanced biliary tract cancer (BTC) has a poor prognosis and limited treatment options. The PI3K/Akt/mTOR signalling pathway is hyperactivated in a subset of BTCs, and clinical activity of the mTOR inhibitor everolimus has been observed in some patients with BTC. The goal of this study was to identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeung, Yvonne, Lau, David K., Chionh, Fiona, Tran, Hoanh, Tse, Janson W. T., Weickhardt, Andrew J., Nikfarjam, Mehrdad, Scott, Andrew M., Tebbutt, Niall C., Mariadason, John M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579335/
https://www.ncbi.nlm.nih.gov/pubmed/28544747
http://dx.doi.org/10.1002/1878-0261.12078
_version_ 1783260689870094336
author Yeung, Yvonne
Lau, David K.
Chionh, Fiona
Tran, Hoanh
Tse, Janson W. T.
Weickhardt, Andrew J.
Nikfarjam, Mehrdad
Scott, Andrew M.
Tebbutt, Niall C.
Mariadason, John M.
author_facet Yeung, Yvonne
Lau, David K.
Chionh, Fiona
Tran, Hoanh
Tse, Janson W. T.
Weickhardt, Andrew J.
Nikfarjam, Mehrdad
Scott, Andrew M.
Tebbutt, Niall C.
Mariadason, John M.
author_sort Yeung, Yvonne
collection PubMed
description Advanced biliary tract cancer (BTC) has a poor prognosis and limited treatment options. The PI3K/Akt/mTOR signalling pathway is hyperactivated in a subset of BTCs, and clinical activity of the mTOR inhibitor everolimus has been observed in some patients with BTC. The goal of this study was to identify biomarkers predictive of everolimus response. Twenty BTC cell lines were assessed for everolimus sensitivity with a spectrum of growth inhibitory responses observed. Molecular biomarkers of sensitivity and resistance were identified by interrogation of the activation status of the Ras/MAPK and PI3K/Akt/mTOR pathways. K‐Ras mutations and/or amplifications were identified in 45% of cell lines and were associated with resistance to everolimus. Activating mutations in PIK3CA or loss of PTEN was not predictive of everolimus response; however, high basal levels of pAKT were associated with sensitivity, independent of Ras/MAPK pathway activation status. Notably, everolimus inhibited mTOR signalling to a similar extent in sensitive and resistant cell lines, suggesting that relative dependence on the mTOR pathway rather than the magnitude of pathway inhibition determines everolimus response. Consistent with the known limitations of rapalogs, everolimus induced feedback‐mediated activation of AKT in BTC cell lines, which could be overcome by cotreatment with an AKT inhibitor or ATP‐competitive mTORC1/mTORC2 inhibitors. However, both approaches failed to induce greater apoptosis compared to everolimus, and mTORC1/mTORC2 kinase inhibitors induced compensatory activation of pERK, identifying an inherent limitation of these agents in BTC cell lines. These findings suggest that future trials of everolimus in BTC would benefit from preselecting patients based on their K‐Ras and PI3K/mTOR pathway activation status. The study also identifies strategies for enhancing inhibition of the PI3K/mTOR pathway in BTC cell lines.
format Online
Article
Text
id pubmed-5579335
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-55793352017-09-06 K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines Yeung, Yvonne Lau, David K. Chionh, Fiona Tran, Hoanh Tse, Janson W. T. Weickhardt, Andrew J. Nikfarjam, Mehrdad Scott, Andrew M. Tebbutt, Niall C. Mariadason, John M. Mol Oncol Research Articles Advanced biliary tract cancer (BTC) has a poor prognosis and limited treatment options. The PI3K/Akt/mTOR signalling pathway is hyperactivated in a subset of BTCs, and clinical activity of the mTOR inhibitor everolimus has been observed in some patients with BTC. The goal of this study was to identify biomarkers predictive of everolimus response. Twenty BTC cell lines were assessed for everolimus sensitivity with a spectrum of growth inhibitory responses observed. Molecular biomarkers of sensitivity and resistance were identified by interrogation of the activation status of the Ras/MAPK and PI3K/Akt/mTOR pathways. K‐Ras mutations and/or amplifications were identified in 45% of cell lines and were associated with resistance to everolimus. Activating mutations in PIK3CA or loss of PTEN was not predictive of everolimus response; however, high basal levels of pAKT were associated with sensitivity, independent of Ras/MAPK pathway activation status. Notably, everolimus inhibited mTOR signalling to a similar extent in sensitive and resistant cell lines, suggesting that relative dependence on the mTOR pathway rather than the magnitude of pathway inhibition determines everolimus response. Consistent with the known limitations of rapalogs, everolimus induced feedback‐mediated activation of AKT in BTC cell lines, which could be overcome by cotreatment with an AKT inhibitor or ATP‐competitive mTORC1/mTORC2 inhibitors. However, both approaches failed to induce greater apoptosis compared to everolimus, and mTORC1/mTORC2 kinase inhibitors induced compensatory activation of pERK, identifying an inherent limitation of these agents in BTC cell lines. These findings suggest that future trials of everolimus in BTC would benefit from preselecting patients based on their K‐Ras and PI3K/mTOR pathway activation status. The study also identifies strategies for enhancing inhibition of the PI3K/mTOR pathway in BTC cell lines. John Wiley and Sons Inc. 2017-06-14 2017-09 /pmc/articles/PMC5579335/ /pubmed/28544747 http://dx.doi.org/10.1002/1878-0261.12078 Text en © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Yeung, Yvonne
Lau, David K.
Chionh, Fiona
Tran, Hoanh
Tse, Janson W. T.
Weickhardt, Andrew J.
Nikfarjam, Mehrdad
Scott, Andrew M.
Tebbutt, Niall C.
Mariadason, John M.
K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines
title K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines
title_full K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines
title_fullStr K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines
title_full_unstemmed K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines
title_short K‐Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines
title_sort k‐ras mutation and amplification status is predictive of resistance and high basal pakt is predictive of sensitivity to everolimus in biliary tract cancer cell lines
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579335/
https://www.ncbi.nlm.nih.gov/pubmed/28544747
http://dx.doi.org/10.1002/1878-0261.12078
work_keys_str_mv AT yeungyvonne krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT laudavidk krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT chionhfiona krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT tranhoanh krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT tsejansonwt krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT weickhardtandrewj krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT nikfarjammehrdad krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT scottandrewm krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT tebbuttniallc krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines
AT mariadasonjohnm krasmutationandamplificationstatusispredictiveofresistanceandhighbasalpaktispredictiveofsensitivitytoeverolimusinbiliarytractcancercelllines