Cargando…
Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction
Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the si...
Autores principales: | Chen, Kun, Liang, Yu, Gao, Zengliang, Liu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579503/ https://www.ncbi.nlm.nih.gov/pubmed/28786957 http://dx.doi.org/10.3390/s17081830 |
Ejemplares similares
-
Soft Sensing of Silicon Content via Bagging Local Semi-Supervised Models
por: He, Xing, et al.
Publicado: (2019) -
Kernel Mixture Correntropy Conjugate Gradient Algorithm for Time Series Prediction
por: Xue, Nan, et al.
Publicado: (2019) -
Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
por: Ma, Wentao, et al.
Publicado: (2018) -
Correntropy Based Matrix Completion
por: Yang, Yuning, et al.
Publicado: (2018) -
Underwater Vehicle Positioning by Correntropy-Based Fuzzy Multi-Sensor Fusion
por: Shaukat, Nabil, et al.
Publicado: (2021)