Cargando…
dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses
German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is avai...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579505/ https://www.ncbi.nlm.nih.gov/pubmed/28775364 http://dx.doi.org/10.1038/emm.2017.107 |
_version_ | 1783260716495536128 |
---|---|
author | Lim, Sangho Ho Sohn, Jung Koo, Ja-Hyun Park, Jung-Won Choi, Je-Min |
author_facet | Lim, Sangho Ho Sohn, Jung Koo, Ja-Hyun Park, Jung-Won Choi, Je-Min |
author_sort | Lim, Sangho |
collection | PubMed |
description | German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. |
format | Online Article Text |
id | pubmed-5579505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-55795052017-09-15 dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses Lim, Sangho Ho Sohn, Jung Koo, Ja-Hyun Park, Jung-Won Choi, Je-Min Exp Mol Med Original Article German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. Nature Publishing Group 2017-08 2017-08-04 /pmc/articles/PMC5579505/ /pubmed/28775364 http://dx.doi.org/10.1038/emm.2017.107 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | Original Article Lim, Sangho Ho Sohn, Jung Koo, Ja-Hyun Park, Jung-Won Choi, Je-Min dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses |
title | dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses |
title_full | dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses |
title_fullStr | dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses |
title_full_unstemmed | dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses |
title_short | dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses |
title_sort | dnp2-ctctla-4 inhibits german cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of th2 responses |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579505/ https://www.ncbi.nlm.nih.gov/pubmed/28775364 http://dx.doi.org/10.1038/emm.2017.107 |
work_keys_str_mv | AT limsangho dnp2ctctla4inhibitsgermancockroachextractinducedallergicairwayinflammationandhyperresponsivenessviainhibitionofth2responses AT hosohnjung dnp2ctctla4inhibitsgermancockroachextractinducedallergicairwayinflammationandhyperresponsivenessviainhibitionofth2responses AT koojahyun dnp2ctctla4inhibitsgermancockroachextractinducedallergicairwayinflammationandhyperresponsivenessviainhibitionofth2responses AT parkjungwon dnp2ctctla4inhibitsgermancockroachextractinducedallergicairwayinflammationandhyperresponsivenessviainhibitionofth2responses AT choijemin dnp2ctctla4inhibitsgermancockroachextractinducedallergicairwayinflammationandhyperresponsivenessviainhibitionofth2responses |