Cargando…
Tandem Palladium and Isothiourea Relay Catalysis: Enantioselective Synthesis of α-Amino Acid Derivatives via Allylic Amination and [2,3]-Sigmatropic Rearrangement
[Image: see text] A tandem relay catalytic protocol using both Pd and isothiourea catalysis has been developed for the enantioselective synthesis of α-amino acid derivatives containing two stereogenic centers from readily accessible N,N-disubstituted glycine aryl esters and allylic phosphates. The o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579534/ https://www.ncbi.nlm.nih.gov/pubmed/28763205 http://dx.doi.org/10.1021/jacs.7b05619 |
Sumario: | [Image: see text] A tandem relay catalytic protocol using both Pd and isothiourea catalysis has been developed for the enantioselective synthesis of α-amino acid derivatives containing two stereogenic centers from readily accessible N,N-disubstituted glycine aryl esters and allylic phosphates. The optimized process uses a bench-stable succinimide-based Pd precatalyst (FurCat) to promote Pd-catalyzed allylic ammonium salt generation from the allylic phosphate and the glycine aryl ester. Subsequent in situ enantioselective [2,3]-sigmatropic rearrangement catalyzed by the isothiourea benzotetramisole forms syn-α-amino acid derivatives with high diastereo- and enantioselectivity. This methodology is most effective using 4-nitrophenylglycine esters and tolerates a variety of substituted cinnamic and styrenyl allylic ethyl phosphates. The use of challenging unsymmetrical N-allyl-N-methylglycine esters is also tolerated under the catalytic relay conditions without compromising stereoselectivity. |
---|