Cargando…
Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS
The present study provides an elaborate assessment of the performance of olfactometers in terms of odorant recovery for a selection of odorants emitted from livestock houses. The study includes three different olfactometer dilution systems, which have been in use at accredited odor laboratories. The...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579735/ https://www.ncbi.nlm.nih.gov/pubmed/28800120 http://dx.doi.org/10.3390/s17081859 |
_version_ | 1783260769716011008 |
---|---|
author | Kasper, Pernille Lund Mannebeck, Dietmar Oxbøl, Arne Nygaard, Jens Vinge Hansen, Michael Jørgen Feilberg, Anders |
author_facet | Kasper, Pernille Lund Mannebeck, Dietmar Oxbøl, Arne Nygaard, Jens Vinge Hansen, Michael Jørgen Feilberg, Anders |
author_sort | Kasper, Pernille Lund |
collection | PubMed |
description | The present study provides an elaborate assessment of the performance of olfactometers in terms of odorant recovery for a selection of odorants emitted from livestock houses. The study includes three different olfactometer dilution systems, which have been in use at accredited odor laboratories. They consist of: (i) a custom-built olfactometer made of glass tubes, (ii) a TO8 olfactometer, and (iii) an Olfacton dilution system based on a mass flow controller. The odorants include hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, butanoic acid, propanoic acid, 3-methylbutanoic acid, 4-methylphenol, and trimethylamine. Furthermore, n-butanol, as the reference gas in the European standard for olfactometry, EN13725, was included. All measurements were performed in real time with proton-transfer-reaction mass spectrometry (PTR-MS). The results show that only dimethyl sulfide was almost completely recovered in all cases, while for the remaining compounds, the performance was found to vary significantly (from 0 to 100%) depending on the chemical properties of the compounds, the concentration levels, the pulse duration, and the olfactometer material. To elucidate the latter, the recovery in different locations of the TO8 olfactometer and in tubes of different materials, that is, poly-tetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), stainless steel and SilcoTek-coated steel, were tested. Significant saturation effects were observed when odorants were in contact with stainless steel. |
format | Online Article Text |
id | pubmed-5579735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55797352017-09-06 Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS Kasper, Pernille Lund Mannebeck, Dietmar Oxbøl, Arne Nygaard, Jens Vinge Hansen, Michael Jørgen Feilberg, Anders Sensors (Basel) Article The present study provides an elaborate assessment of the performance of olfactometers in terms of odorant recovery for a selection of odorants emitted from livestock houses. The study includes three different olfactometer dilution systems, which have been in use at accredited odor laboratories. They consist of: (i) a custom-built olfactometer made of glass tubes, (ii) a TO8 olfactometer, and (iii) an Olfacton dilution system based on a mass flow controller. The odorants include hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, butanoic acid, propanoic acid, 3-methylbutanoic acid, 4-methylphenol, and trimethylamine. Furthermore, n-butanol, as the reference gas in the European standard for olfactometry, EN13725, was included. All measurements were performed in real time with proton-transfer-reaction mass spectrometry (PTR-MS). The results show that only dimethyl sulfide was almost completely recovered in all cases, while for the remaining compounds, the performance was found to vary significantly (from 0 to 100%) depending on the chemical properties of the compounds, the concentration levels, the pulse duration, and the olfactometer material. To elucidate the latter, the recovery in different locations of the TO8 olfactometer and in tubes of different materials, that is, poly-tetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), stainless steel and SilcoTek-coated steel, were tested. Significant saturation effects were observed when odorants were in contact with stainless steel. MDPI 2017-08-11 /pmc/articles/PMC5579735/ /pubmed/28800120 http://dx.doi.org/10.3390/s17081859 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kasper, Pernille Lund Mannebeck, Dietmar Oxbøl, Arne Nygaard, Jens Vinge Hansen, Michael Jørgen Feilberg, Anders Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS |
title | Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS |
title_full | Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS |
title_fullStr | Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS |
title_full_unstemmed | Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS |
title_short | Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS |
title_sort | effects of dilution systems in olfactometry on the recovery of typical livestock odorants determined by ptr-ms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579735/ https://www.ncbi.nlm.nih.gov/pubmed/28800120 http://dx.doi.org/10.3390/s17081859 |
work_keys_str_mv | AT kasperpernillelund effectsofdilutionsystemsinolfactometryontherecoveryoftypicallivestockodorantsdeterminedbyptrms AT mannebeckdietmar effectsofdilutionsystemsinolfactometryontherecoveryoftypicallivestockodorantsdeterminedbyptrms AT oxbølarne effectsofdilutionsystemsinolfactometryontherecoveryoftypicallivestockodorantsdeterminedbyptrms AT nygaardjensvinge effectsofdilutionsystemsinolfactometryontherecoveryoftypicallivestockodorantsdeterminedbyptrms AT hansenmichaeljørgen effectsofdilutionsystemsinolfactometryontherecoveryoftypicallivestockodorantsdeterminedbyptrms AT feilberganders effectsofdilutionsystemsinolfactometryontherecoveryoftypicallivestockodorantsdeterminedbyptrms |