Cargando…
A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors
In this article, we propose a novel detection method for underwater moving targets by detecting their extremely low frequency (ELF) emissions with inductive sensors. The ELF field source of the targets is modeled by a horizontal electric dipole at distances more than several times of the targets’ le...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579927/ https://www.ncbi.nlm.nih.gov/pubmed/28788097 http://dx.doi.org/10.3390/s17081734 |
_version_ | 1783260808876130304 |
---|---|
author | Wang, Jinhong Li, Bin Chen, Lianping Li, Li |
author_facet | Wang, Jinhong Li, Bin Chen, Lianping Li, Li |
author_sort | Wang, Jinhong |
collection | PubMed |
description | In this article, we propose a novel detection method for underwater moving targets by detecting their extremely low frequency (ELF) emissions with inductive sensors. The ELF field source of the targets is modeled by a horizontal electric dipole at distances more than several times of the targets’ length. The formulas for the fields produced in air are derived with a three-layer model (air, seawater and seafloor) and are evaluated with a complementary numerical integration technique. A proof of concept measurement is presented. The ELF emissions from a surface ship were detected by inductive electronic and magnetic sensors as the ship was leaving a harbor. ELF signals are of substantial strength and have typical characteristic of harmonic line spectrum, and the fundamental frequency has a direct relationship with the ship’s speed. Due to the high sensitivity and low noise level of our sensors, it is capable of resolving weak ELF signals at long distance. In our experiment, a detection distance of 1300 m from the surface ship above the sea surface was realized, which shows that this method would be an appealing complement to the usual acoustic detection and magnetic anomaly detection capability. |
format | Online Article Text |
id | pubmed-5579927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55799272017-09-06 A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors Wang, Jinhong Li, Bin Chen, Lianping Li, Li Sensors (Basel) Article In this article, we propose a novel detection method for underwater moving targets by detecting their extremely low frequency (ELF) emissions with inductive sensors. The ELF field source of the targets is modeled by a horizontal electric dipole at distances more than several times of the targets’ length. The formulas for the fields produced in air are derived with a three-layer model (air, seawater and seafloor) and are evaluated with a complementary numerical integration technique. A proof of concept measurement is presented. The ELF emissions from a surface ship were detected by inductive electronic and magnetic sensors as the ship was leaving a harbor. ELF signals are of substantial strength and have typical characteristic of harmonic line spectrum, and the fundamental frequency has a direct relationship with the ship’s speed. Due to the high sensitivity and low noise level of our sensors, it is capable of resolving weak ELF signals at long distance. In our experiment, a detection distance of 1300 m from the surface ship above the sea surface was realized, which shows that this method would be an appealing complement to the usual acoustic detection and magnetic anomaly detection capability. MDPI 2017-07-28 /pmc/articles/PMC5579927/ /pubmed/28788097 http://dx.doi.org/10.3390/s17081734 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Jinhong Li, Bin Chen, Lianping Li, Li A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors |
title | A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors |
title_full | A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors |
title_fullStr | A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors |
title_full_unstemmed | A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors |
title_short | A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors |
title_sort | novel detection method for underwater moving targets by measuring their elf emissions with inductive sensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579927/ https://www.ncbi.nlm.nih.gov/pubmed/28788097 http://dx.doi.org/10.3390/s17081734 |
work_keys_str_mv | AT wangjinhong anoveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors AT libin anoveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors AT chenlianping anoveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors AT lili anoveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors AT wangjinhong noveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors AT libin noveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors AT chenlianping noveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors AT lili noveldetectionmethodforunderwatermovingtargetsbymeasuringtheirelfemissionswithinductivesensors |