Cargando…
An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault dia...
Autores principales: | Li, Shaobo, Liu, Guokai, Tang, Xianghong, Lu, Jianguang, Hu, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579931/ https://www.ncbi.nlm.nih.gov/pubmed/28788099 http://dx.doi.org/10.3390/s17081729 |
Ejemplares similares
-
Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
por: Li, Hongmei, et al.
Publicado: (2019) -
Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
por: Xu, Gaowei, et al.
Publicado: (2019) -
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data
por: Liu, Yang, et al.
Publicado: (2019) -
Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network
por: Liu, Xian, et al.
Publicado: (2022) -
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
por: Hoang, Duy Tang, et al.
Publicado: (2021)