Cargando…

Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors

Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Kottapalli, Ajay Giri Prakash, Bora, Meghali, Kanhere, Elgar, Asadnia, Mohsen, Miao, Jianmin, Triantafyllou, Michael S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580308/
https://www.ncbi.nlm.nih.gov/pubmed/28788059
http://dx.doi.org/10.3390/s17081728
Descripción
Sumario:Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 μm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.