Cargando…
Exploring differential evolution for inverse QSAR analysis
Inverse quantitative structure-activity relationship (QSAR) modeling encompasses the generation of compound structures from values of descriptors corresponding to high activity predicted with a given QSAR model. Structure generation proceeds from descriptor coordinates optimized for activity predict...
Autores principales: | Miyao, Tomoyuki, Funatsu, Kimito, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580410/ https://www.ncbi.nlm.nih.gov/pubmed/28928936 http://dx.doi.org/10.12688/f1000research.12228.2 |
Ejemplares similares
-
Ranking-Oriented Quantitative Structure–Activity
Relationship Modeling Combined with Assay-Wise Data Integration
por: Matsumoto, Katsuhisa, et al.
Publicado: (2021) -
Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel
por: Tamura, Shunsuke, et al.
Publicado: (2021) -
Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity
por: Tamura, Shunsuke, et al.
Publicado: (2023) -
Large-Scale Comparison of Alternative Similarity Search Strategies with Varying Chemical
Information Contents
por: Laufkötter, Oliver, et al.
Publicado: (2019) -
Computational method for estimating progression saturation of analog series
por: Kunimoto, Ryo, et al.
Publicado: (2018)