Cargando…

A dangerous context changes the way that rats learn about and discriminate between innocuous events in sensory preconditioning

Four experiments used a sensory preconditioning protocol to examine how a dangerous context influences learning about innocuous events. In Experiments 1, 2, and 3, rats were exposed to presentations of a tone followed immediately or 20-sec later by presentations of a light. These tone–light pairings...

Descripción completa

Detalles Bibliográficos
Autores principales: Holmes, Nathan M., Westbrook, R. Frederick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580528/
https://www.ncbi.nlm.nih.gov/pubmed/28814470
http://dx.doi.org/10.1101/lm.044297.116
Descripción
Sumario:Four experiments used a sensory preconditioning protocol to examine how a dangerous context influences learning about innocuous events. In Experiments 1, 2, and 3, rats were exposed to presentations of a tone followed immediately or 20-sec later by presentations of a light. These tone–light pairings occurred in a context that was either familiar and safe, or equally familiar but dangerous, that is, it was a context in which rats had been exposed to footshock. Rats were next exposed to parings of the light and shock and then tested with the tone (and light). The experiments showed that a dangerous context permits formation of a tone–light association under circumstances that preclude formation of that same association in a safe context (Experiments 1 and 2), and that this facilitative effect on associative formation depends on the content being currently dangerous rather than having been dangerous in the past (Experiment 3). Experiment 4 examined whether a dangerous context facilitates discrimination between two innocuous events. In a safe or dangerous context, rats were exposed to a tone that signaled the light and then to a white noise presented alone. Subsequent to conditioning of the light, the tests revealed that rats that had been exposed to these tone–light and white noise alone presentations in a dangerous context froze to the tone but not to the noise, whereas those exposed in a safe context froze to both the tone and the white noise. The results were related to previous evidence that the amygdala is critical for processing information about innocuous stimuli in a dangerous but not a safe context. They were attributed to an amygdala-based enhancement of arousal and/or attention in a dangerous context, hence the facilitation of associative formation and enhanced discriminability in this context.