Cargando…
Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway
Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Inhibition of Cr(VI)-induced carcinogenesis by a dietary antioxidant is a novel approach. Quercetin is one of the most abundant dietary flavonoids widely present in many fruits and veget...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581017/ https://www.ncbi.nlm.nih.gov/pubmed/28881718 http://dx.doi.org/10.18632/oncotarget.10130 |
Sumario: | Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Inhibition of Cr(VI)-induced carcinogenesis by a dietary antioxidant is a novel approach. Quercetin is one of the most abundant dietary flavonoids widely present in many fruits and vegetables, possesses potent antioxidant and anticancer properties. MicroRNA-21 (miR-21) is a key oncomiR significantly elevated in the majority of human cancers that exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the effect of quercetin on the inhibition of Cr(VI)-induced malignant cell transformation and the role of miR-21-PDCD4 signaling involved. Our results showed that quercetin decreased ROS generation induced by Cr(VI) exposure in BEAS-2B cells. Chronic Cr(VI) exposure induced malignant cell transformation, increased miR-21 expression and caused inhibition of PDCD4, which were significantly inhibited by the treatment of quercetin in a dose dependent manner. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of quercetin showed reduced tumor incidence compared to Cr(VI) alone treated group. Stable knockdown of miR-21 and overexpression of PDCD4 or catalase in BEAS-2B cells suppressed Cr(VI)-induced malignant transformation and tumorigenesis. Taken together, these results demonstrate that quercetin is able to protect BEAS-2B cells from Cr(VI)-induced carcinogenesis by targeting miR-21-PDCD4 signaling. |
---|