Cargando…

Identification of long non-coding RNAs biomarkers associated with progression of endometrial carcinoma and patient outcomes

Endometrial carcinoma is a complex disease characterized by both genetic, epigenetic and environmental factors. Increasing evidence has suggested that long non-coding RNAs (lncRNAs) play important roles in the development and progression of cancers. In this study, we performed a comparison analysis...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yanan, Zou, Xiaoyan, He, Jun, Mao, Yuqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581054/
https://www.ncbi.nlm.nih.gov/pubmed/28881755
http://dx.doi.org/10.18632/oncotarget.17537
Descripción
Sumario:Endometrial carcinoma is a complex disease characterized by both genetic, epigenetic and environmental factors. Increasing evidence has suggested that long non-coding RNAs (lncRNAs) play important roles in the development and progression of cancers. In this study, we performed a comparison analysis for lncRNA expression between patients with early-stage (stage I/II) and those with advanced-stage (stage III/IV) derived from The Cancer Genome Atlas (TCGA) project and identified 17 differentially expressed lncRNAs using student t-test. Five of the 17 differentially expressed lncRNAs were selected as optimal biomarkers that are significantly associated with progression of UCEC using random forest feature selection procedure. A risk classifier of five lncRNAs was developed to as a molecular signature that identifies patients at high risk for progression using support vector machine. Results of five-lncRNA risk classifier achieved high discriminatory performance in distinguishing advanced stage from early stage with 78% prediction accuracy, 96.6% sensitivity and 76.6% specificity. Functional analysis suggested that these five lncRNA biomarkers may play critical roles in the progression of UCEC by participating in important cancer-related biological processes. Our study will help to improve our understanding of underlying mechanisms in the progression of UCEC and provide novel lncRNAs as candidate predictive biomarkers for the identification of patients with high risk for progression.