Cargando…

Selective ATP hydrolysis inhibition in F1Fo ATP synthase enhances radiosensitivity in non-small-cell lung cancer cells (A549)

BACKGROUND: F1Fo-ATP synthase (F1Fo-ATPase) is a reversibly rotary molecular machine whose dual functions of synthesizing or hydrolyzing ATP switch upon the condition of cell physiology. The robust ATP-hydrolyzing activity occurs in ischemia for maintaining the transmembrane proton motive force of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yupei, Hou, Qinzheng, Xiao, Guoqing, Yang, Shifeng, Di, Cuixia, Si, Jing, Zhou, Rong, Ye, Yancheng, Zhang, Yanshan, Zhang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581133/
https://www.ncbi.nlm.nih.gov/pubmed/28881834
http://dx.doi.org/10.18632/oncotarget.18657
Descripción
Sumario:BACKGROUND: F1Fo-ATP synthase (F1Fo-ATPase) is a reversibly rotary molecular machine whose dual functions of synthesizing or hydrolyzing ATP switch upon the condition of cell physiology. The robust ATP-hydrolyzing activity occurs in ischemia for maintaining the transmembrane proton motive force of mitochondria inner membrane, but the effect of F1Fo-ATPase on X-ray response of non-small-cell lung cancer (NSCLC) cells is unknown. METHODS AND FINDINGS: We studied whether ATP hydrolysis affected X-ray radiation induced cell death. NSCLC cells (A549) were pretreated with BTB06584 (BTB), an elective ATP hydrolysis inhibitor, followed by X-ray radiation. Cell viability and clonogenic survival were markedly decreased, clear indications of enhanced radiosensitivity through BTB incubation. Additionally, ATP5α1 was upregulated in parallel with elevated ATP hydrolytic activity after X-ray radiation, showing an increased mitochondrial membrane potential (ΔΨm). ATP hydrolysis inhibition led to collapse of ΔΨm suggesting ATP hydrolytic activity could enhance ΔΨm after X-ray radiation. Furthermore, we also demonstrated that apoptosis was pronounced with the prolonged collapse of ΔΨm due to hydrolysis inhibition by BTB incubation. CONCLUSION: Overall, these findings supported that ATP hydrolysis inhibition could enhance the radiosensitivity in NSCLC cells (A549) after X-ray radiation, which was due to the collapse of ΔΨm.