Cargando…

Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont

Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur com...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponnudurai, Ruby, Sayavedra, Lizbeth, Kleiner, Manuel, Heiden, Stefan E., Thürmer, Andrea, Felbeck, Horst, Schlüter, Rabea, Sievert, Stefan M., Daniel, Rolf, Schweder, Thomas, Markert, Stephanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581435/
https://www.ncbi.nlm.nih.gov/pubmed/28878861
http://dx.doi.org/10.1186/s40793-017-0266-y
_version_ 1783261047643176960
author Ponnudurai, Ruby
Sayavedra, Lizbeth
Kleiner, Manuel
Heiden, Stefan E.
Thürmer, Andrea
Felbeck, Horst
Schlüter, Rabea
Sievert, Stefan M.
Daniel, Rolf
Schweder, Thomas
Markert, Stephanie
author_facet Ponnudurai, Ruby
Sayavedra, Lizbeth
Kleiner, Manuel
Heiden, Stefan E.
Thürmer, Andrea
Felbeck, Horst
Schlüter, Rabea
Sievert, Stefan M.
Daniel, Rolf
Schweder, Thomas
Markert, Stephanie
author_sort Ponnudurai, Ruby
collection PubMed
description Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics. In this study, we report the first draft genome sequence of the sulfur-oxidizing symbiont of B. thermophilus, here tentatively named Candidatus Thioglobus thermophilus. The draft genome (3.1 Mb) harbors 3045 protein-coding genes. It revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO(2) fixation. Enzymes required for the synthesis of the tricarboxylic acid cycle intermediates oxaloacetate and succinate were absent, suggesting that these intermediates may be substituted by metabolites from external sources. We also detected a repertoire of genes associated with cell surface adhesion, bacteriotoxicity and phage immunity, which may perform symbiosis-specific roles in the B. thermophilus symbiosis.
format Online
Article
Text
id pubmed-5581435
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-55814352017-09-06 Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont Ponnudurai, Ruby Sayavedra, Lizbeth Kleiner, Manuel Heiden, Stefan E. Thürmer, Andrea Felbeck, Horst Schlüter, Rabea Sievert, Stefan M. Daniel, Rolf Schweder, Thomas Markert, Stephanie Stand Genomic Sci Extended Genome Report Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics. In this study, we report the first draft genome sequence of the sulfur-oxidizing symbiont of B. thermophilus, here tentatively named Candidatus Thioglobus thermophilus. The draft genome (3.1 Mb) harbors 3045 protein-coding genes. It revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO(2) fixation. Enzymes required for the synthesis of the tricarboxylic acid cycle intermediates oxaloacetate and succinate were absent, suggesting that these intermediates may be substituted by metabolites from external sources. We also detected a repertoire of genes associated with cell surface adhesion, bacteriotoxicity and phage immunity, which may perform symbiosis-specific roles in the B. thermophilus symbiosis. BioMed Central 2017-09-02 /pmc/articles/PMC5581435/ /pubmed/28878861 http://dx.doi.org/10.1186/s40793-017-0266-y Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Extended Genome Report
Ponnudurai, Ruby
Sayavedra, Lizbeth
Kleiner, Manuel
Heiden, Stefan E.
Thürmer, Andrea
Felbeck, Horst
Schlüter, Rabea
Sievert, Stefan M.
Daniel, Rolf
Schweder, Thomas
Markert, Stephanie
Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont
title Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont
title_full Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont
title_fullStr Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont
title_full_unstemmed Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont
title_short Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont
title_sort genome sequence of the sulfur-oxidizing bathymodiolus thermophilus gill endosymbiont
topic Extended Genome Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581435/
https://www.ncbi.nlm.nih.gov/pubmed/28878861
http://dx.doi.org/10.1186/s40793-017-0266-y
work_keys_str_mv AT ponnudurairuby genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT sayavedralizbeth genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT kleinermanuel genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT heidenstefane genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT thurmerandrea genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT felbeckhorst genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT schluterrabea genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT sievertstefanm genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT danielrolf genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT schwederthomas genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont
AT markertstephanie genomesequenceofthesulfuroxidizingbathymodiolusthermophilusgillendosymbiont