Cargando…
Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats
BACKGROUND: Astrocytes support a range of brain functions as well as neuronal survival, but their detailed relationship with stroke-related edema is not well understood. We previously demonstrated that the release of lactate from astrocytes isolated from stroke-prone spontaneously hypertensive rats...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581459/ https://www.ncbi.nlm.nih.gov/pubmed/28865453 http://dx.doi.org/10.1186/s12974-017-0949-8 |
_version_ | 1783261053291855872 |
---|---|
author | Yamagata, Kazuo Takahashi, Natsumi Akita, Nozomi Nabika, Toru |
author_facet | Yamagata, Kazuo Takahashi, Natsumi Akita, Nozomi Nabika, Toru |
author_sort | Yamagata, Kazuo |
collection | PubMed |
description | BACKGROUND: Astrocytes support a range of brain functions as well as neuronal survival, but their detailed relationship with stroke-related edema is not well understood. We previously demonstrated that the release of lactate from astrocytes isolated from stroke-prone spontaneously hypertensive rats (SHRSP/Izm) was attenuated under stroke conditions. The supply of lactate to neurons is regulated by astrocytic monocarboxylate transporters (MCTs). The purpose of this study was to examine the contributions of arginine vasopressin (AVP) and/or hypoxia and reoxygenation (H/R) to the regulation of MCTs and neurotrophic factor in astrocytes obtained from SHRSP/Izm and congenic SHRpch1_18 rats. METHODS: We compared AVP-induced lactate levels, MCTs, and brain-derived neurotrophic factor (BDNF) in astrocytes isolated from SHRSP/Izm, SHRpch1_18, and Wistar Kyoto rats (WKY/Izm). The expression levels of genes and proteins were determined by PCR and Western blotting (WB). RESULTS: The production of lactate induced by AVP was increased in astrocytes from all three strains. However, the levels of lactate were lower in SHRSP/Izm and SHRpch1_18 animals compared with the WKY/Izm strain. Gene expression levels of Slc16a1, Slc16a4, and Bdnf were lowered by AVP in SHRSP/Izm and SHRpch1_18 rats compared with WKY/Izm. The increase of MCT4 that was induced by AVP was blocked by the addition of a specific nitric oxide (NO) chelator, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO). Furthermore, AVP increased the expression of iNOS and eNOS proteins in WKY/Izm and SHRSP/Izm rat astrocytes. However, the iNOS expression levels in SHRSP astrocytes differed from those of WKY/Izm astrocytes. The increase of MCT4 protein expression during AVP treatment was blocked by the addition of a specific NF-kB inhibitor, pyrrolidine dithiocarbamate (PDTC). The induction of MCT4 by AVP may be regulated by NO through NF-kB. CONCLUSIONS: These results suggest that the expression of MCTs mediated by AVP may be regulated by NO. The data suggest that AVP attenuated the expression of MCTs in SHRSP/Izm and SHRpch1_18 astrocytes. Reduced expression of MCTs may be associated with decreased lactate production in SHRSP. |
format | Online Article Text |
id | pubmed-5581459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55814592017-09-06 Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats Yamagata, Kazuo Takahashi, Natsumi Akita, Nozomi Nabika, Toru J Neuroinflammation Research BACKGROUND: Astrocytes support a range of brain functions as well as neuronal survival, but their detailed relationship with stroke-related edema is not well understood. We previously demonstrated that the release of lactate from astrocytes isolated from stroke-prone spontaneously hypertensive rats (SHRSP/Izm) was attenuated under stroke conditions. The supply of lactate to neurons is regulated by astrocytic monocarboxylate transporters (MCTs). The purpose of this study was to examine the contributions of arginine vasopressin (AVP) and/or hypoxia and reoxygenation (H/R) to the regulation of MCTs and neurotrophic factor in astrocytes obtained from SHRSP/Izm and congenic SHRpch1_18 rats. METHODS: We compared AVP-induced lactate levels, MCTs, and brain-derived neurotrophic factor (BDNF) in astrocytes isolated from SHRSP/Izm, SHRpch1_18, and Wistar Kyoto rats (WKY/Izm). The expression levels of genes and proteins were determined by PCR and Western blotting (WB). RESULTS: The production of lactate induced by AVP was increased in astrocytes from all three strains. However, the levels of lactate were lower in SHRSP/Izm and SHRpch1_18 animals compared with the WKY/Izm strain. Gene expression levels of Slc16a1, Slc16a4, and Bdnf were lowered by AVP in SHRSP/Izm and SHRpch1_18 rats compared with WKY/Izm. The increase of MCT4 that was induced by AVP was blocked by the addition of a specific nitric oxide (NO) chelator, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO). Furthermore, AVP increased the expression of iNOS and eNOS proteins in WKY/Izm and SHRSP/Izm rat astrocytes. However, the iNOS expression levels in SHRSP astrocytes differed from those of WKY/Izm astrocytes. The increase of MCT4 protein expression during AVP treatment was blocked by the addition of a specific NF-kB inhibitor, pyrrolidine dithiocarbamate (PDTC). The induction of MCT4 by AVP may be regulated by NO through NF-kB. CONCLUSIONS: These results suggest that the expression of MCTs mediated by AVP may be regulated by NO. The data suggest that AVP attenuated the expression of MCTs in SHRSP/Izm and SHRpch1_18 astrocytes. Reduced expression of MCTs may be associated with decreased lactate production in SHRSP. BioMed Central 2017-09-02 /pmc/articles/PMC5581459/ /pubmed/28865453 http://dx.doi.org/10.1186/s12974-017-0949-8 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Yamagata, Kazuo Takahashi, Natsumi Akita, Nozomi Nabika, Toru Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats |
title | Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats |
title_full | Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats |
title_fullStr | Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats |
title_full_unstemmed | Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats |
title_short | Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats |
title_sort | arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic shrpch1_18 rats |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581459/ https://www.ncbi.nlm.nih.gov/pubmed/28865453 http://dx.doi.org/10.1186/s12974-017-0949-8 |
work_keys_str_mv | AT yamagatakazuo argininevasopressinalteredtheexpressionofmonocarboxylatetransportersinculturedastrocytesisolatedfromstrokepronespontaneouslyhypertensiveratsandcongenicshrpch118rats AT takahashinatsumi argininevasopressinalteredtheexpressionofmonocarboxylatetransportersinculturedastrocytesisolatedfromstrokepronespontaneouslyhypertensiveratsandcongenicshrpch118rats AT akitanozomi argininevasopressinalteredtheexpressionofmonocarboxylatetransportersinculturedastrocytesisolatedfromstrokepronespontaneouslyhypertensiveratsandcongenicshrpch118rats AT nabikatoru argininevasopressinalteredtheexpressionofmonocarboxylatetransportersinculturedastrocytesisolatedfromstrokepronespontaneouslyhypertensiveratsandcongenicshrpch118rats |