Cargando…

Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers

In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chuan-Wei, Zhang, Jin-Chuan, Jia, Zhi-Wei, Zhuo, Ning, Zhai, Shen-Qiang, Wang, Li-Jun, Liu, Jun-Qi, Liu, Shu-Man, Liu, Feng-Qi, Wang, Zhan-Guo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581747/
https://www.ncbi.nlm.nih.gov/pubmed/28866815
http://dx.doi.org/10.1186/s11671-017-2281-8
Descripción
Sumario:In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5(o) and 1.94(o) in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.