Cargando…
An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations
The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can be...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581829/ https://www.ncbi.nlm.nih.gov/pubmed/28900435 http://dx.doi.org/10.3389/fpls.2017.01483 |
_version_ | 1783261101814710272 |
---|---|
author | Martin, Guillaume Magne, Marie-Angélina Cristobal, Magali San |
author_facet | Martin, Guillaume Magne, Marie-Angélina Cristobal, Magali San |
author_sort | Martin, Guillaume |
collection | PubMed |
description | The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers’ technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers’ technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008–2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4–66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers’ practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations. |
format | Online Article Text |
id | pubmed-5581829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55818292017-09-12 An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations Martin, Guillaume Magne, Marie-Angélina Cristobal, Magali San Front Plant Sci Plant Science The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers’ technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers’ technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008–2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4–66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers’ practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations. Frontiers Media S.A. 2017-08-29 /pmc/articles/PMC5581829/ /pubmed/28900435 http://dx.doi.org/10.3389/fpls.2017.01483 Text en Copyright © 2017 Martin, Magne and Cristobal. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Martin, Guillaume Magne, Marie-Angélina Cristobal, Magali San An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations |
title | An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations |
title_full | An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations |
title_fullStr | An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations |
title_full_unstemmed | An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations |
title_short | An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations |
title_sort | integrated method to analyze farm vulnerability to climatic and economic variability according to farm configurations and farmers’ adaptations |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581829/ https://www.ncbi.nlm.nih.gov/pubmed/28900435 http://dx.doi.org/10.3389/fpls.2017.01483 |
work_keys_str_mv | AT martinguillaume anintegratedmethodtoanalyzefarmvulnerabilitytoclimaticandeconomicvariabilityaccordingtofarmconfigurationsandfarmersadaptations AT magnemarieangelina anintegratedmethodtoanalyzefarmvulnerabilitytoclimaticandeconomicvariabilityaccordingtofarmconfigurationsandfarmersadaptations AT cristobalmagalisan anintegratedmethodtoanalyzefarmvulnerabilitytoclimaticandeconomicvariabilityaccordingtofarmconfigurationsandfarmersadaptations AT martinguillaume integratedmethodtoanalyzefarmvulnerabilitytoclimaticandeconomicvariabilityaccordingtofarmconfigurationsandfarmersadaptations AT magnemarieangelina integratedmethodtoanalyzefarmvulnerabilitytoclimaticandeconomicvariabilityaccordingtofarmconfigurationsandfarmersadaptations AT cristobalmagalisan integratedmethodtoanalyzefarmvulnerabilitytoclimaticandeconomicvariabilityaccordingtofarmconfigurationsandfarmersadaptations |