Cargando…
Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees
BACKGROUND: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582666/ https://www.ncbi.nlm.nih.gov/pubmed/28894756 http://dx.doi.org/10.1177/2325967117722506 |
_version_ | 1783261222334889984 |
---|---|
author | Saxby, David John Bryant, Adam L. Wang, Xinyang Modenese, Luca Gerus, Pauline Konrath, Jason M. Bennell, Kim L. Fortin, Karine Wrigley, Tim Cicuttini, Flavia M. Vertullo, Christopher J. Feller, Julian A. Whitehead, Tim Gallie, Price Lloyd, David G. |
author_facet | Saxby, David John Bryant, Adam L. Wang, Xinyang Modenese, Luca Gerus, Pauline Konrath, Jason M. Bennell, Kim L. Fortin, Karine Wrigley, Tim Cicuttini, Flavia M. Vertullo, Christopher J. Feller, Julian A. Whitehead, Tim Gallie, Price Lloyd, David G. |
collection | PubMed |
description | BACKGROUND: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. HYPOTHESES: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. RESULTS: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R (2) = 0.43, β = 0.62, P = .000; lateral: R (2) = 0.19, β = 0.46, P = .03) and medial thicknesses (R (2) = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R (2) = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R (2) = 0.41, β = 0.64, P = .001) and thicknesses (R (2) = 0.20, β = 0.46, P = .04). CONCLUSION: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance. |
format | Online Article Text |
id | pubmed-5582666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-55826662017-09-11 Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees Saxby, David John Bryant, Adam L. Wang, Xinyang Modenese, Luca Gerus, Pauline Konrath, Jason M. Bennell, Kim L. Fortin, Karine Wrigley, Tim Cicuttini, Flavia M. Vertullo, Christopher J. Feller, Julian A. Whitehead, Tim Gallie, Price Lloyd, David G. Orthop J Sports Med 32 BACKGROUND: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. HYPOTHESES: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. RESULTS: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R (2) = 0.43, β = 0.62, P = .000; lateral: R (2) = 0.19, β = 0.46, P = .03) and medial thicknesses (R (2) = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R (2) = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R (2) = 0.41, β = 0.64, P = .001) and thicknesses (R (2) = 0.20, β = 0.46, P = .04). CONCLUSION: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance. SAGE Publications 2017-08-31 /pmc/articles/PMC5582666/ /pubmed/28894756 http://dx.doi.org/10.1177/2325967117722506 Text en © The Author(s) 2017 http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | 32 Saxby, David John Bryant, Adam L. Wang, Xinyang Modenese, Luca Gerus, Pauline Konrath, Jason M. Bennell, Kim L. Fortin, Karine Wrigley, Tim Cicuttini, Flavia M. Vertullo, Christopher J. Feller, Julian A. Whitehead, Tim Gallie, Price Lloyd, David G. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees |
title | Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees |
title_full | Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees |
title_fullStr | Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees |
title_full_unstemmed | Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees |
title_short | Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees |
title_sort | relationships between tibiofemoral contact forces and cartilage morphology at 2 to 3 years after single-bundle hamstring anterior cruciate ligament reconstruction and in healthy knees |
topic | 32 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582666/ https://www.ncbi.nlm.nih.gov/pubmed/28894756 http://dx.doi.org/10.1177/2325967117722506 |
work_keys_str_mv | AT relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT saxbydavidjohn relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT bryantadaml relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT wangxinyang relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT modeneseluca relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT geruspauline relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT konrathjasonm relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT bennellkiml relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT fortinkarine relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT wrigleytim relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT cicuttiniflaviam relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT vertullochristopherj relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT fellerjuliana relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT whiteheadtim relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT gallieprice relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees AT lloyddavidg relationshipsbetweentibiofemoralcontactforcesandcartilagemorphologyat2to3yearsaftersinglebundlehamstringanteriorcruciateligamentreconstructionandinhealthyknees |