Cargando…
Paralog-divergent Features May Help Reduce Off-target Effects of Drugs: Hints from Glucagon Subfamily Analysis
Side effects from targeted drugs remain a serious concern. One reason is the nonselective binding of a drug to unintended proteins such as its paralogs, which are highly homologous in sequences and have similar structures and drug-binding pockets. To identify targetable differences between paralogs,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582795/ https://www.ncbi.nlm.nih.gov/pubmed/28642113 http://dx.doi.org/10.1016/j.gpb.2017.03.004 |
Sumario: | Side effects from targeted drugs remain a serious concern. One reason is the nonselective binding of a drug to unintended proteins such as its paralogs, which are highly homologous in sequences and have similar structures and drug-binding pockets. To identify targetable differences between paralogs, we analyzed two types (type-I and type-II) of functional divergence between two paralogs in the known target protein receptor family G-protein coupled receptors (GPCRs) at the amino acid level. Paralogous protein receptors in glucagon-like subfamily, glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), exhibit divergence in ligands and are clinically validated drug targets for type 2 diabetes. Our data showed that type-II amino acids were significantly enriched in the binding sites of antagonist MK-0893 to GCGR, which had a radical shift in physicochemical properties between GCGR and GLP-1R. We also examined the role of type-I amino acids between GCGR and GLP-1R. The divergent features between GCGR and GLP-1R paralogs may be helpful in their discrimination, thus enabling the identification of binding sites to reduce undesirable side effects and increase the target specificity of drugs. |
---|