Cargando…
Molecular de-novo design through deep reinforcement learning
This work introduces a method to tune a sequence-based generative model for molecular de novo design that through augmented episodic likelihood can learn to generate structures with certain specified desirable properties. We demonstrate how this model can execute a range of tasks such as generating...
Autores principales: | Olivecrona, Marcus, Blaschke, Thomas, Engkvist, Ola, Chen, Hongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583141/ https://www.ncbi.nlm.nih.gov/pubmed/29086083 http://dx.doi.org/10.1186/s13321-017-0235-x |
Ejemplares similares
-
Application of Generative Autoencoder in De Novo Molecular Design
por: Blaschke, Thomas, et al.
Publicado: (2017) -
Memory-assisted reinforcement learning for diverse molecular de novo design
por: Blaschke, Thomas, et al.
Publicado: (2020) -
SMILES-based deep generative scaffold decorator for de-novo drug design
por: Arús-Pous, Josep, et al.
Publicado: (2020) -
Deep reinforcement learning for de novo drug design
por: Popova, Mariya, et al.
Publicado: (2018) -
Exploring the GDB-13 chemical space using deep generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019)