Cargando…

Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries

Alpine ski racing is known to be a sport with a high risk of injuries. Because most studies have focused mainly on top-level athletes and on traumatic injuries, limited research exists about injury risk factors among youth ski racers. The aim of this study was to determine the intrinsic risk factors...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Lisa, Hildebrandt, Carolin, Müller, Erich, Fink, Christian, Raschner, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583226/
https://www.ncbi.nlm.nih.gov/pubmed/28912731
http://dx.doi.org/10.3389/fphys.2017.00656
_version_ 1783261281307852800
author Müller, Lisa
Hildebrandt, Carolin
Müller, Erich
Fink, Christian
Raschner, Christian
author_facet Müller, Lisa
Hildebrandt, Carolin
Müller, Erich
Fink, Christian
Raschner, Christian
author_sort Müller, Lisa
collection PubMed
description Alpine ski racing is known to be a sport with a high risk of injuries. Because most studies have focused mainly on top-level athletes and on traumatic injuries, limited research exists about injury risk factors among youth ski racers. The aim of this study was to determine the intrinsic risk factors (anthropometrics, biological maturity, physical fitness, racing technique) for injury among youth alpine ski racers. Study participants were 81 youth ski racers attending a ski boarding school (50 males, 31 females; 9–14 years). A prospective longitudinal cohort design was used to monitor sports-related risk factors over two seasons and traumatic (TI) and overuse injuries (OI). At the beginning of the study, anthropometric characteristics (body height, body weight, sitting height, body mass index); biological maturity [status age at peak height velocity (APHV)]; physical performance parameters related to jump coordination, maximal leg and core strength, explosive and reactive strength, balance and endurance; and ski racing technique were assessed. Z score transformations normalized the age groups. Multivariate binary logistic regression (dependent variable: injury yes/no) and multivariate linear regression analyses (dependent variable: injury severity in total days of absence from training) were calculated. T-tests and multivariate analyses of variance were used to reveal differences between injured and non-injured athletes and between injury severity groups. The level of significance was set to p < 0.05. Relatively low rates of injuries were reported for both traumatic (0.63 TI/athlete) and overuse injuries (0.21 OI/athlete). Athletes with higher body weight, body height, and sitting height; lower APHV values; better core flexion strength; smaller core flexion:extension strength ratio; shorter drop jump contact time; and higher drop jump reactive strength index were at a lower injury risk or more vulnerable for fewer days of absence from training. However, significant differences between injured and non-injured athletes were only observed with respect to the drop jump reactive strength index. Regular documentation of anthropometric characteristics, biological maturity and physical fitness parameters is crucial to help to prevent injury in youth ski racing. The present findings suggest that neuromuscular training should be incorporated into the training regimen of youth ski racers to prevent injuries.
format Online
Article
Text
id pubmed-5583226
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-55832262017-09-14 Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries Müller, Lisa Hildebrandt, Carolin Müller, Erich Fink, Christian Raschner, Christian Front Physiol Physiology Alpine ski racing is known to be a sport with a high risk of injuries. Because most studies have focused mainly on top-level athletes and on traumatic injuries, limited research exists about injury risk factors among youth ski racers. The aim of this study was to determine the intrinsic risk factors (anthropometrics, biological maturity, physical fitness, racing technique) for injury among youth alpine ski racers. Study participants were 81 youth ski racers attending a ski boarding school (50 males, 31 females; 9–14 years). A prospective longitudinal cohort design was used to monitor sports-related risk factors over two seasons and traumatic (TI) and overuse injuries (OI). At the beginning of the study, anthropometric characteristics (body height, body weight, sitting height, body mass index); biological maturity [status age at peak height velocity (APHV)]; physical performance parameters related to jump coordination, maximal leg and core strength, explosive and reactive strength, balance and endurance; and ski racing technique were assessed. Z score transformations normalized the age groups. Multivariate binary logistic regression (dependent variable: injury yes/no) and multivariate linear regression analyses (dependent variable: injury severity in total days of absence from training) were calculated. T-tests and multivariate analyses of variance were used to reveal differences between injured and non-injured athletes and between injury severity groups. The level of significance was set to p < 0.05. Relatively low rates of injuries were reported for both traumatic (0.63 TI/athlete) and overuse injuries (0.21 OI/athlete). Athletes with higher body weight, body height, and sitting height; lower APHV values; better core flexion strength; smaller core flexion:extension strength ratio; shorter drop jump contact time; and higher drop jump reactive strength index were at a lower injury risk or more vulnerable for fewer days of absence from training. However, significant differences between injured and non-injured athletes were only observed with respect to the drop jump reactive strength index. Regular documentation of anthropometric characteristics, biological maturity and physical fitness parameters is crucial to help to prevent injury in youth ski racing. The present findings suggest that neuromuscular training should be incorporated into the training regimen of youth ski racers to prevent injuries. Frontiers Media S.A. 2017-08-31 /pmc/articles/PMC5583226/ /pubmed/28912731 http://dx.doi.org/10.3389/fphys.2017.00656 Text en Copyright © 2017 Müller, Hildebrandt, Müller, Fink and Raschner. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Müller, Lisa
Hildebrandt, Carolin
Müller, Erich
Fink, Christian
Raschner, Christian
Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries
title Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries
title_full Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries
title_fullStr Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries
title_full_unstemmed Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries
title_short Long-Term Athletic Development in Youth Alpine Ski Racing: The Effect of Physical Fitness, Ski Racing Technique, Anthropometrics and Biological Maturity Status on Injuries
title_sort long-term athletic development in youth alpine ski racing: the effect of physical fitness, ski racing technique, anthropometrics and biological maturity status on injuries
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583226/
https://www.ncbi.nlm.nih.gov/pubmed/28912731
http://dx.doi.org/10.3389/fphys.2017.00656
work_keys_str_mv AT mullerlisa longtermathleticdevelopmentinyouthalpineskiracingtheeffectofphysicalfitnessskiracingtechniqueanthropometricsandbiologicalmaturitystatusoninjuries
AT hildebrandtcarolin longtermathleticdevelopmentinyouthalpineskiracingtheeffectofphysicalfitnessskiracingtechniqueanthropometricsandbiologicalmaturitystatusoninjuries
AT mullererich longtermathleticdevelopmentinyouthalpineskiracingtheeffectofphysicalfitnessskiracingtechniqueanthropometricsandbiologicalmaturitystatusoninjuries
AT finkchristian longtermathleticdevelopmentinyouthalpineskiracingtheeffectofphysicalfitnessskiracingtechniqueanthropometricsandbiologicalmaturitystatusoninjuries
AT raschnerchristian longtermathleticdevelopmentinyouthalpineskiracingtheeffectofphysicalfitnessskiracingtechniqueanthropometricsandbiologicalmaturitystatusoninjuries