Cargando…
Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity?
The Amazon basin includes 1000s of bodies of water, that are sorted according to their color in three types: blackwater, clearwater, and whitewater, which significantly differ in terms of their physicochemical parameters. More than 3,000 species of fish live in the rivers of the Amazon, among them,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583242/ https://www.ncbi.nlm.nih.gov/pubmed/28912799 http://dx.doi.org/10.3389/fgene.2017.00114 |
_version_ | 1783261285038686208 |
---|---|
author | Araújo, José D. A. Ghelfi, Andrea Val, Adalberto L. |
author_facet | Araújo, José D. A. Ghelfi, Andrea Val, Adalberto L. |
author_sort | Araújo, José D. A. |
collection | PubMed |
description | The Amazon basin includes 1000s of bodies of water, that are sorted according to their color in three types: blackwater, clearwater, and whitewater, which significantly differ in terms of their physicochemical parameters. More than 3,000 species of fish live in the rivers of the Amazon, among them, the sardine, Triportheus albus, which is one of the few species that inhabit all three types of water. The purpose of our study was to analyze if the gene expression of T. albus is determined by the different types of water, that is, if the species presents phenotypic plasticity to live in blackwater, clearwater, and whitewater. Gills of T. albus were collected at well-characterized sites for each type of water. Nine cDNA libraries were constructed, three biological replicates of each condition and the RNA was sequenced (RNA-Seq) on the MiSeq(®) Platform (Illumina(®)). A total of 51.6 million of paired-end reads, and 285,456 transcripts were assembled. Considering the FDR ≤ 0.05 and fold change ≥ 2, 13,754 differentially expressed genes were detected in the three water types. Two mechanisms related to homeostasis were detected in T. albus that live in blackwater, when compared to the ones in clearwater and whitewater. The acidic blackwater is a challenging environment for many types of aquatic organisms. The first mechanism is related to the decrease in cellular permeability, highlighting the genes coding for claudin proteins, actn4, itgb3b, DSP, Gap junction protein, and Ca(2+)-ATPase. The second with ionic and acid-base regulation [rhcg1, slc9a6a (NHE), ATP6V0A2, Na(+)/K(+)-ATPase, slc26a4 (pedrin) and slc4a4b]. We suggest T. albus is a good species of fish for future studies involving the ionic and acid-base regulation of Amazonian species. We also concluded that, T. albus, shows well defined phenotypic plasticity for each water type in the Amazon basin. |
format | Online Article Text |
id | pubmed-5583242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55832422017-09-14 Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? Araújo, José D. A. Ghelfi, Andrea Val, Adalberto L. Front Genet Genetics The Amazon basin includes 1000s of bodies of water, that are sorted according to their color in three types: blackwater, clearwater, and whitewater, which significantly differ in terms of their physicochemical parameters. More than 3,000 species of fish live in the rivers of the Amazon, among them, the sardine, Triportheus albus, which is one of the few species that inhabit all three types of water. The purpose of our study was to analyze if the gene expression of T. albus is determined by the different types of water, that is, if the species presents phenotypic plasticity to live in blackwater, clearwater, and whitewater. Gills of T. albus were collected at well-characterized sites for each type of water. Nine cDNA libraries were constructed, three biological replicates of each condition and the RNA was sequenced (RNA-Seq) on the MiSeq(®) Platform (Illumina(®)). A total of 51.6 million of paired-end reads, and 285,456 transcripts were assembled. Considering the FDR ≤ 0.05 and fold change ≥ 2, 13,754 differentially expressed genes were detected in the three water types. Two mechanisms related to homeostasis were detected in T. albus that live in blackwater, when compared to the ones in clearwater and whitewater. The acidic blackwater is a challenging environment for many types of aquatic organisms. The first mechanism is related to the decrease in cellular permeability, highlighting the genes coding for claudin proteins, actn4, itgb3b, DSP, Gap junction protein, and Ca(2+)-ATPase. The second with ionic and acid-base regulation [rhcg1, slc9a6a (NHE), ATP6V0A2, Na(+)/K(+)-ATPase, slc26a4 (pedrin) and slc4a4b]. We suggest T. albus is a good species of fish for future studies involving the ionic and acid-base regulation of Amazonian species. We also concluded that, T. albus, shows well defined phenotypic plasticity for each water type in the Amazon basin. Frontiers Media S.A. 2017-08-31 /pmc/articles/PMC5583242/ /pubmed/28912799 http://dx.doi.org/10.3389/fgene.2017.00114 Text en Copyright © 2017 Araújo, Ghelfi and Val. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Araújo, José D. A. Ghelfi, Andrea Val, Adalberto L. Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? |
title | Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? |
title_full | Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? |
title_fullStr | Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? |
title_full_unstemmed | Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? |
title_short | Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? |
title_sort | triportheus albus cope, 1872 in the blackwater, clearwater, and whitewater of the amazon: a case of phenotypic plasticity? |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583242/ https://www.ncbi.nlm.nih.gov/pubmed/28912799 http://dx.doi.org/10.3389/fgene.2017.00114 |
work_keys_str_mv | AT araujojoseda triportheusalbuscope1872intheblackwaterclearwaterandwhitewateroftheamazonacaseofphenotypicplasticity AT ghelfiandrea triportheusalbuscope1872intheblackwaterclearwaterandwhitewateroftheamazonacaseofphenotypicplasticity AT valadalbertol triportheusalbuscope1872intheblackwaterclearwaterandwhitewateroftheamazonacaseofphenotypicplasticity |