Cargando…

Ancestry & molecular evolutionary analyses of heat shock protein 47 kDa (HSP47/SERPINH1)

HSP47/SERPINH1 is key-regulator for collagen biosynthesis and its structural assembly. To date, there is no comprehensive study on the phylogenetic history of HSP47. Herein we illustrate the evolutionary history of HSP47/SERPINH1 along with sequence, structural and syntenic traits for HSP47/SERPINH1...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Abhishek, Bhandari, Anita, Sarde, Sandeep J., Goswami, Chandan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583329/
https://www.ncbi.nlm.nih.gov/pubmed/28871169
http://dx.doi.org/10.1038/s41598-017-10740-0
Descripción
Sumario:HSP47/SERPINH1 is key-regulator for collagen biosynthesis and its structural assembly. To date, there is no comprehensive study on the phylogenetic history of HSP47. Herein we illustrate the evolutionary history of HSP47/SERPINH1 along with sequence, structural and syntenic traits for HSP47/SERPINH1. We have identified ancestral HSP47/SERPINH1 locus in Japanese lamprey (Lethenteron japonicum). This gene remains on the same or similar locus for ~500 million years (MY), but chromosomal duplication was observed in ray-finned fishes, leading into three sets of three sets (I-III) of HSP47/SERPINH1. Two novel introns were inserted at the positions 36b and 102b in the first exon of only HSP47_1 gene from the selected ray-finned fishes. On the evolutionary time scale, the events of HSP47 duplications took placed between 416–360 MY ago (MYA) while intron insertion dates back to 231–190 MYA after early divergence of ray-finned fishes.