Cargando…
A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme
Traditional radiomics models mainly rely on explicitly-designed handcrafted features from medical images. This paper aimed to investigate if deep features extracted via transfer learning can generate radiomics signatures for prediction of overall survival (OS) in patients with Glioblastoma Multiform...
Autores principales: | Lao, Jiangwei, Chen, Yinsheng, Li, Zhi-Cheng, Li, Qihua, Zhang, Ji, Liu, Jing, Zhai, Guangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583361/ https://www.ncbi.nlm.nih.gov/pubmed/28871110 http://dx.doi.org/10.1038/s41598-017-10649-8 |
Ejemplares similares
-
A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
por: Li, Qihua, et al.
Publicado: (2017) -
Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction
por: Shboul, Zeina A., et al.
Publicado: (2019) -
Deep Learning Radiomics to Predict PTEN Mutation Status From Magnetic Resonance Imaging in Patients With Glioma
por: Chen, Hongyu, et al.
Publicado: (2021) -
Survival Analysis of Glioblastoma Multiforme
por: Witthayanuwat, Supapan, et al.
Publicado: (2018) -
MRI radiomic features of peritumoral edema may predict the recurrence sites of glioblastoma multiforme
por: Long, Hao, et al.
Publicado: (2023)