Cargando…

Interleukin-17A is involved in mechanical hyperalgesia but not in the severity of murine antigen-induced arthritis

Interleukin-17A (IL-17A) is considered an important pro-inflammatory cytokine but its importance in joint diseases such as rheumatoid arthritis (RA) is unclear. It has also been reported that IL-17A may induce pain but it is unclear whether pro-inflammatory and pro-nociceptive effects are linked. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebbinghaus, Matthias, Natura, Gabriel, Segond von Banchet, Gisela, Hensellek, Susanne, Böttcher, Martin, Hoffmann, Birgit, Salah, Firas Subhi, Gajda, Mieczyslaw, Kamradt, Thomas, Schaible, Hans-Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583382/
https://www.ncbi.nlm.nih.gov/pubmed/28871176
http://dx.doi.org/10.1038/s41598-017-10509-5
Descripción
Sumario:Interleukin-17A (IL-17A) is considered an important pro-inflammatory cytokine but its importance in joint diseases such as rheumatoid arthritis (RA) is unclear. It has also been reported that IL-17A may induce pain but it is unclear whether pro-inflammatory and pro-nociceptive effects are linked. Here we studied in wild type (WT) and IL-17A knockout (IL-17AKO) mice inflammation and hyperalgesia in antigen-induced arthritis (AIA). We found that the severity and time course of AIA were indistinguishable in WT and IL-17AKO mice. Furthermore, the reduction of inflammation by sympathectomy, usually observed in WT mice, was preserved in IL-17AKO mice. Both findings suggest that IL-17A is redundant in AIA pathology. However, in the course of AIA IL-17AKO mice showed less mechanical hyperalgesia than WT mice indicating that IL-17A contributes to pain even if it is not crucial for arthritis pathology. In support for a role of IL-17A and other members of the IL-17 family in the generation of pain we found that sensory neurones in the dorsal root ganglia (DRG) express all IL-17 receptor subtypes. Furthermore, in isolated DRG neurones most IL-17 isoforms increased tetrodotoxin- (TTX-) resistant sodium currents which indicate a role of IL-17 members in inflammation-evoked sensitization of sensory nociceptive neurones.