Cargando…

Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

Friedreich’s ataxia (FRDA) is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neu...

Descripción completa

Detalles Bibliográficos
Autores principales: Mollá, Belén, Muñoz-Lasso, Diana C., Riveiro, Fátima, Bolinches-Amorós, Arantxa, Pallardó, Federico V., Fernandez-Vilata, Angel, de la Iglesia-Vaya, María, Palau, Francesc, Gonzalez-Cabo, Pilar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583981/
https://www.ncbi.nlm.nih.gov/pubmed/28912677
http://dx.doi.org/10.3389/fnmol.2017.00264
_version_ 1783261384361902080
author Mollá, Belén
Muñoz-Lasso, Diana C.
Riveiro, Fátima
Bolinches-Amorós, Arantxa
Pallardó, Federico V.
Fernandez-Vilata, Angel
de la Iglesia-Vaya, María
Palau, Francesc
Gonzalez-Cabo, Pilar
author_facet Mollá, Belén
Muñoz-Lasso, Diana C.
Riveiro, Fátima
Bolinches-Amorós, Arantxa
Pallardó, Federico V.
Fernandez-Vilata, Angel
de la Iglesia-Vaya, María
Palau, Francesc
Gonzalez-Cabo, Pilar
author_sort Mollá, Belén
collection PubMed
description Friedreich’s ataxia (FRDA) is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG) of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca(2+) to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca(2+) with Ca(2+) chelators or metalloprotease inhibitors, preventing Ca(2+)-mediated axonal injury. Thus, the modulation of Ca(2+) levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.
format Online
Article
Text
id pubmed-5583981
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-55839812017-09-14 Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice Mollá, Belén Muñoz-Lasso, Diana C. Riveiro, Fátima Bolinches-Amorós, Arantxa Pallardó, Federico V. Fernandez-Vilata, Angel de la Iglesia-Vaya, María Palau, Francesc Gonzalez-Cabo, Pilar Front Mol Neurosci Neuroscience Friedreich’s ataxia (FRDA) is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG) of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca(2+) to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca(2+) with Ca(2+) chelators or metalloprotease inhibitors, preventing Ca(2+)-mediated axonal injury. Thus, the modulation of Ca(2+) levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration. Frontiers Media S.A. 2017-08-30 /pmc/articles/PMC5583981/ /pubmed/28912677 http://dx.doi.org/10.3389/fnmol.2017.00264 Text en Copyright © 2017 Mollá, Muñoz-Lasso, Riveiro, Bolinches-Amorós, Pallardó, Fernandez-Vilata, de la Iglesia-Vaya, Palau and Gonzalez-Cabo. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Mollá, Belén
Muñoz-Lasso, Diana C.
Riveiro, Fátima
Bolinches-Amorós, Arantxa
Pallardó, Federico V.
Fernandez-Vilata, Angel
de la Iglesia-Vaya, María
Palau, Francesc
Gonzalez-Cabo, Pilar
Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice
title Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice
title_full Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice
title_fullStr Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice
title_full_unstemmed Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice
title_short Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice
title_sort reversible axonal dystrophy by calcium modulation in frataxin-deficient sensory neurons of yg8r mice
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583981/
https://www.ncbi.nlm.nih.gov/pubmed/28912677
http://dx.doi.org/10.3389/fnmol.2017.00264
work_keys_str_mv AT mollabelen reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT munozlassodianac reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT riveirofatima reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT bolinchesamorosarantxa reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT pallardofedericov reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT fernandezvilataangel reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT delaiglesiavayamaria reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT palaufrancesc reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice
AT gonzalezcabopilar reversibleaxonaldystrophybycalciummodulationinfrataxindeficientsensoryneuronsofyg8rmice