Cargando…

APEX2-enhanced electron microscopy distinguishes sigma-1 receptor localization in the nucleoplasmic reticulum

The sigma-1 receptor (Sig1R) is an endoplasmic reticulum chaperonin that is attracting tremendous interest as a potential anti-neurodegenerative target. While this membrane protein is known to reside in the inner nuclear envelope (NE) and influences transcription, apparent Sig1R presence in the nucl...

Descripción completa

Detalles Bibliográficos
Autores principales: Mavlyutov, Timur A., Yang, Huan, Epstein, Miles L., Ruoho, Arnold E., Yang, Jay, Guo, Lian-Wang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584251/
https://www.ncbi.nlm.nih.gov/pubmed/28881650
http://dx.doi.org/10.18632/oncotarget.17906
Descripción
Sumario:The sigma-1 receptor (Sig1R) is an endoplasmic reticulum chaperonin that is attracting tremendous interest as a potential anti-neurodegenerative target. While this membrane protein is known to reside in the inner nuclear envelope (NE) and influences transcription, apparent Sig1R presence in the nucleoplasm is often observed, seemingly contradicting its NE localization. We addressed this confounding issue by applying an antibody-free approach of electron microscopy (EM) to define Sig1R nuclear localization. We expressed APEX2 peroxidase fused to Sig1R-GFP in a Sig1R-null NSC34 neuronal cell line generated with CRISPR-Cas9. APEX2-catalyzed gold/silver precipitation markedly improved EM clarity and confirmed an apparent intra-nuclear presence of Sig1R. However, serial sectioning combined with APEX2-enhanced EM revealed that Sig1R actually resided in the nucleoplasmic reticulum (NR), a specialized nuclear compartment formed via NE invagination into the nucleoplasm. NR cross-sections also indicated Sig1R in ring-shaped NR membranes. Thus, this study distinguishes Sig1R in the NR which could otherwise appear localized in the nucleoplasm if detected with low-resolution methods. Our finding is important for uncovering potential Sig1R regulations in the nucleus.