Cargando…

Genetic evaluations of Chinese patients with odontohypophosphatasia resulting from heterozygosity for mutations in the tissue-non-specific alkaline phosphatase gene

BACKGROUND: Hypophosphatasia is a rare heritable metabolic disorder characterized by defective bone and tooth mineralization accompanied by a deficiency of tissue-non-specific (liver/bone/kidney) isoenzyme of alkaline phosphatase activity, caused by a number of loss-of-function mutations in the alka...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Jia, Zhang, Li, Liu, Tang, Wang, Yewei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584270/
https://www.ncbi.nlm.nih.gov/pubmed/28881669
http://dx.doi.org/10.18632/oncotarget.18093
Descripción
Sumario:BACKGROUND: Hypophosphatasia is a rare heritable metabolic disorder characterized by defective bone and tooth mineralization accompanied by a deficiency of tissue-non-specific (liver/bone/kidney) isoenzyme of alkaline phosphatase activity, caused by a number of loss-of-function mutations in the alkaline phosphatase liver type gene. We seek to explore the clinical manifestations and identify the mutations associated with the disease in a Chinese odonto- hypophosphatasia family. RESULTS: The proband and his younger brother affected with premature loss of primary teeth at their 2-year-old. They have mild abnormal serum alkaline phosphatase and 25-hydroxy vitamin D values, but the serum alkaline phosphatase activity of their father, mother and grandmother, who showed no clinical symptoms of hypophosphatasia, was exhibited significant decreased. In addition to premature loss of primary teeth, the proband and his younger brother showed low bone mineral density, X-rays showed that they had slight metaphyseal osteoporosis changes, but no additional skeletal abnormalities. Deoxyribonucleic acid sequencing and analysis revealed a single nucleotide polymorphism c.787T>C (p.Y263H) in exon 7 and/or a novel mutation c.-92C>T located at 5’UTR were found in the affected individuals. MATERIALS AND METHODS: We examined all individuals of an odonto- hypophosphatasia family by clinical and radiographic examinations as well as laboratory assays. Furthermore, all 12 exons and the exon-intron boundaries of the alkaline phosphatase liver type gene were amplified and directly sequenced for further analysis and screened for mutations. CONCLUSION: Our present findings suggest the single nucleotide polymorphism c.787T>C and c.-92C>T should be responsible for the odonto- hypophosphatasia disorders in this family.