Cargando…

Associations of rs823128, rs1572931, and rs823156 polymorphisms with reduced Parkinson’s disease risks

The PARK16 locus is considered to play a protective role in Parkinson’s disease (PD). However, the epidemiological evidence on the relationships between PARK16 single-nucleotide polymorphisms (rs823128, rs1572931, and rs823156) and PD is inconsistent. Therefore, we carried out a meta-analysis to val...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Ye, Dong, Lihong, Huang, Xinghua, Zheng, Shuanglin, Qiu, Ping, Lan, Fenghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585133/
https://www.ncbi.nlm.nih.gov/pubmed/28749816
http://dx.doi.org/10.1097/WNR.0000000000000846
Descripción
Sumario:The PARK16 locus is considered to play a protective role in Parkinson’s disease (PD). However, the epidemiological evidence on the relationships between PARK16 single-nucleotide polymorphisms (rs823128, rs1572931, and rs823156) and PD is inconsistent. Therefore, we carried out a meta-analysis to validate the relationships and performed a bioinformatic analysis to explore putative regulation mechanisms of the single-nucleotide polymorphisms in PD. Through meta-analysis, we confirmed that minor variants of rs823128A>G, rs1572931C>T, and rs823156A>G played protective roles in PD. Through bioinformatic analysis, we predicted that rs823128, rs1572931, and rs823156 as noncoding variants of NUCKS1, RAB29, and SLC41A1, respectively, might affect PD risk by altering the transcription factor-binding capability of the genes. These findings suggest new clues for PD research and potential targets for PD prevention and treatment.