Cargando…
Reconstructing complex network for characterizing the time-varying causality evolution behavior of multivariate time series
In order to explore the characteristics of the evolution behavior of the time-varying relationships between multivariate time series, this paper proposes an algorithm to transfer this evolution process to a complex network. We take the causality patterns as nodes and the succeeding sequence relation...
Autores principales: | Jiang, Meihui, Gao, Xiangyun, An, Haizhong, Li, Huajiao, Sun, Bowen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585247/ https://www.ncbi.nlm.nih.gov/pubmed/28874713 http://dx.doi.org/10.1038/s41598-017-10759-3 |
Ejemplares similares
-
Incorporation of causality structures to complex network analysis of time-varying behaviour of multivariate time series
por: Carlos-Sandberg, Leo, et al.
Publicado: (2021) -
Characteristics of the transmission of autoregressive sub-patterns in financial time series
por: Gao, Xiangyun, et al.
Publicado: (2014) -
Normalized Multivariate Time Series Causality Analysis and Causal Graph Reconstruction
por: Liang, X. San
Publicado: (2021) -
Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality
por: Papana, Angeliki
Publicado: (2021) -
Estimation of time-varying causal effects with multivariable Mendelian randomization: some cautionary notes
por: Tian, Haodong, et al.
Publicado: (2023)