Cargando…

Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation

Treatment of full-thickness skin defects poses significant clinical challenges including risk of infection and severe scaring. Silver nanoparticle (NAg), an effective antimicrobial agent, has provided a promising therapeutic method for burn wounds. However, the detailed mechanism remains unknown. He...

Descripción completa

Detalles Bibliográficos
Autores principales: You, Chuangang, Li, Qiong, Wang, Xingang, Wu, Pan, Ho, Jon Kee, Jin, Ronghua, Zhang, Liping, Shao, Huawei, Han, Chunmao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585259/
https://www.ncbi.nlm.nih.gov/pubmed/28874692
http://dx.doi.org/10.1038/s41598-017-10481-0
Descripción
Sumario:Treatment of full-thickness skin defects poses significant clinical challenges including risk of infection and severe scaring. Silver nanoparticle (NAg), an effective antimicrobial agent, has provided a promising therapeutic method for burn wounds. However, the detailed mechanism remains unknown. Hence, we constructed a metallic nanosilver particles-collagen/chitosan hybrid scaffold (NAg-CCS) and investigated its potential effects on wound healing. In vitro scratch assay, immunofluorescence staining and antibacterial activity of the scaffold were all studied. In vivo NAg-CCS was applied in full-thickness skin defects in Sprague-Dawley (SD) rats and the therapeutic effects of treatment were evaluated. The results showed that NAg at a concentration of 10 ppm accelerated the migration of fibroblasts with an increase in expression of α-smooth muscle actin (α-SMA). Furthermore, in vivo studies showed increased levels of pro-inflammatory and scar-related factors as well as α-SMA, while markers for macrophage activation were up-regulated. On day 60 post transplantation of ultra-thin skin graft, the regenerated skin by NAg-CCS had a similar structure to normal skin. In summary, we demonstrated that NAg-CCS was bactericidal, anti-inflammatory and promoted wound healing potentially by regulating fibroblast migration and macrophage activation, making it an ideal dermal substitute for wound regeneration.