Cargando…
Prediction of miRNA-disease Associations using an Evolutionary Tuned Latent Semantic Analysis
MicroRNAs, small non-coding elements implied in gene regulation, are very interesting biomarkers for various diseases such as cancers. They represent potential prodigious biotechnologies for early diagnosis and gene therapies. However, experimental verification of microRNA-disease associations are t...
Autores principales: | Pallez, Denis, Gardès, Julien, Pasquier, Claude |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585369/ https://www.ncbi.nlm.nih.gov/pubmed/28874691 http://dx.doi.org/10.1038/s41598-017-10065-y |
Ejemplares similares
-
Prediction of miRNA-disease associations with a vector space model
por: Pasquier, Claude, et al.
Publicado: (2016) -
Predicting MiRNA-Disease Association by Latent Feature Extraction with Positive Samples
por: Che, Kai, et al.
Publicado: (2019) -
MEAHNE: miRNA–Disease Association Prediction Based on Semantic Information in a Heterogeneous Network
por: Huang, Chen, et al.
Publicado: (2022) -
A network embedding approach to identify active modules in biological interaction networks
por: Pasquier, Claude, et al.
Publicado: (2023) -
Evolutionary study of duplications of the miRNA machinery in aphids associated with striking rate acceleration and changes in expression profiles
por: Ortiz-Rivas, Benjamín, et al.
Publicado: (2012)