Cargando…
Identifying DNase I hypersensitive sites as driver distal regulatory elements in breast cancer
Efforts to identify driver mutations in cancer have largely focused on genes, whereas non-coding sequences remain relatively unexplored. Here we develop a statistical method based on characteristics known to influence local mutation rate and a series of enrichment filters in order to identify distal...
Autores principales: | D′Antonio, Matteo, Weghorn, Donate, D′Antonio-Chronowska, Agnieszka, Coulet, Florence, Olson, Katrina M., DeBoever, Christopher, Drees, Frauke, Arias, Angelo, Alakus, Hakan, Richardson, Andrea L., Schwab, Richard B., Farley, Emma K., Sunyaev, Shamil R., Frazer, Kelly A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585396/ https://www.ncbi.nlm.nih.gov/pubmed/28874753 http://dx.doi.org/10.1038/s41467-017-00100-x |
Ejemplares similares
-
Identification of cancer driver genes based on nucleotide context
por: Dietlein, Felix, et al.
Publicado: (2020) -
A closer look into DNase I hypersensitivity
por: He, Housheng Hansen, et al.
Publicado: (2013) -
Deep learning for DNase I hypersensitive sites identification
por: Lyu, Chuqiao, et al.
Publicado: (2018) -
Germline de novo mutation rates on exons versus introns in humans
por: Rodriguez-Galindo, Miguel, et al.
Publicado: (2020) -
Discovery and quality analysis of a comprehensive set of structural variants and short tandem repeats
por: Jakubosky, David, et al.
Publicado: (2020)