Cargando…
Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation
Unlike Support Vector Machine (SVM), Multiple Kernel Learning (MKL) allows datasets to be free to choose the useful kernels based on their distribution characteristics rather than a precise one. It has been shown in the literature that MKL holds superior recognition accuracy compared with SVM, howev...
Autores principales: | Niu, Wenjia, Xia, Kewen, Zu, Baokai, Bai, Jianchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585640/ https://www.ncbi.nlm.nih.gov/pubmed/28912801 http://dx.doi.org/10.1155/2017/3678487 |
Ejemplares similares
-
A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph
por: Zu, Baokai, et al.
Publicado: (2017) -
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
por: Ge, Ting, et al.
Publicado: (2022) -
Kernelized rank learning for personalized drug recommendation
por: He, Xiao, et al.
Publicado: (2018) -
Capturing Complex 3D Human Motions with Kernelized Low-Rank Representation from Monocular RGB Camera
por: Wang, Xuan, et al.
Publicado: (2017) -
Modelling and Recognition of Protein Contact Networks by Multiple Kernel Learning and Dissimilarity Representations
por: Martino, Alessio, et al.
Publicado: (2020)