Cargando…
Protein kinase C regulates AMPA receptor auxiliary protein Shisa9/CKAMP44 through interactions with neuronal scaffold PICK1
Synaptic α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptors are essential mediators of neurotransmission in the central nervous system. Shisa9/cysteine‐knot AMPAR modulating protein 44 (CKAMP44) is a transmembrane protein recently found to be present in AMPA receptor‐associated prot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586339/ https://www.ncbi.nlm.nih.gov/pubmed/28904854 http://dx.doi.org/10.1002/2211-5463.12261 |
Sumario: | Synaptic α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptors are essential mediators of neurotransmission in the central nervous system. Shisa9/cysteine‐knot AMPAR modulating protein 44 (CKAMP44) is a transmembrane protein recently found to be present in AMPA receptor‐associated protein complexes. Here, we show that the cytosolic tail of Shisa9/CKAMP44 interacts with multiple scaffold proteins that are important for regulating synaptic plasticity in central neurons. We focussed on the interaction with the scaffold protein PICK1, which facilitates the formation of a tripartite complex with the protein kinase C (PKC) and thereby regulates phosphorylation of Shisa9/CKAMP44 C‐terminal residues. This work has implications for our understanding of how PICK1 modulates AMPAR‐mediated transmission and plasticity and also highlights a novel function of PKC. |
---|