Cargando…

Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo

BACKGROUND: Structural remodeling of human atria plays a key role in sustaining atrial fibrillation (AF), but insufficient quantitative analysis of human atrial structure impedes the treatment of AF. We aimed to develop a novel 3‐dimensional (3D) structural and computational simulation analysis tool...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jichao, Hansen, Brian J., Wang, Yufeng, Csepe, Thomas A., Sul, Lidiya V., Tang, Alan, Yuan, Yiming, Li, Ning, Bratasz, Anna, Powell, Kimerly A., Kilic, Ahmet, Mohler, Peter J., Janssen, Paul M. L., Weiss, Raul, Simonetti, Orlando P., Hummel, John D., Fedorov, Vadim V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586436/
https://www.ncbi.nlm.nih.gov/pubmed/28862969
http://dx.doi.org/10.1161/JAHA.117.005922
_version_ 1783261815208148992
author Zhao, Jichao
Hansen, Brian J.
Wang, Yufeng
Csepe, Thomas A.
Sul, Lidiya V.
Tang, Alan
Yuan, Yiming
Li, Ning
Bratasz, Anna
Powell, Kimerly A.
Kilic, Ahmet
Mohler, Peter J.
Janssen, Paul M. L.
Weiss, Raul
Simonetti, Orlando P.
Hummel, John D.
Fedorov, Vadim V.
author_facet Zhao, Jichao
Hansen, Brian J.
Wang, Yufeng
Csepe, Thomas A.
Sul, Lidiya V.
Tang, Alan
Yuan, Yiming
Li, Ning
Bratasz, Anna
Powell, Kimerly A.
Kilic, Ahmet
Mohler, Peter J.
Janssen, Paul M. L.
Weiss, Raul
Simonetti, Orlando P.
Hummel, John D.
Fedorov, Vadim V.
author_sort Zhao, Jichao
collection PubMed
description BACKGROUND: Structural remodeling of human atria plays a key role in sustaining atrial fibrillation (AF), but insufficient quantitative analysis of human atrial structure impedes the treatment of AF. We aimed to develop a novel 3‐dimensional (3D) structural and computational simulation analysis tool that could reveal the structural contributors to human reentrant AF drivers. METHODS AND RESULTS: High‐resolution panoramic epicardial optical mapping of the coronary‐perfused explanted intact human atria (63‐year‐old woman, chronic hypertension, heart weight 608 g) was conducted during sinus rhythm and sustained AF maintained by spatially stable reentrant AF drivers in the left and right atrium. The whole atria (107×61×85 mm(3)) were then imaged with contrast‐enhancement MRI (9.4 T, 180×180×360‐μm(3) resolution). The entire 3D human atria were analyzed for wall thickness (0.4–11.7 mm), myofiber orientations, and transmural fibrosis (36.9% subendocardium; 14.2% midwall; 3.4% subepicardium). The 3D computational analysis revealed that a specific combination of wall thickness and fibrosis ranges were primarily present in the optically defined AF driver regions versus nondriver tissue. Finally, a 3D human heart–specific atrial computer model was developed by integrating 3D structural and functional mapping data to test AF induction, maintenance, and ablation strategies. This 3D model reproduced the optically defined reentrant AF drivers, which were uninducible when fibrosis and myofiber anisotropy were removed from the model. CONCLUSIONS: Our novel 3D computational high‐resolution framework may be used to quantitatively analyze structural substrates, such as wall thickness, myofiber orientation, and fibrosis, underlying localized AF drivers, and aid the development of new patient‐specific treatments.
format Online
Article
Text
id pubmed-5586436
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-55864362017-09-11 Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo Zhao, Jichao Hansen, Brian J. Wang, Yufeng Csepe, Thomas A. Sul, Lidiya V. Tang, Alan Yuan, Yiming Li, Ning Bratasz, Anna Powell, Kimerly A. Kilic, Ahmet Mohler, Peter J. Janssen, Paul M. L. Weiss, Raul Simonetti, Orlando P. Hummel, John D. Fedorov, Vadim V. J Am Heart Assoc Original Research BACKGROUND: Structural remodeling of human atria plays a key role in sustaining atrial fibrillation (AF), but insufficient quantitative analysis of human atrial structure impedes the treatment of AF. We aimed to develop a novel 3‐dimensional (3D) structural and computational simulation analysis tool that could reveal the structural contributors to human reentrant AF drivers. METHODS AND RESULTS: High‐resolution panoramic epicardial optical mapping of the coronary‐perfused explanted intact human atria (63‐year‐old woman, chronic hypertension, heart weight 608 g) was conducted during sinus rhythm and sustained AF maintained by spatially stable reentrant AF drivers in the left and right atrium. The whole atria (107×61×85 mm(3)) were then imaged with contrast‐enhancement MRI (9.4 T, 180×180×360‐μm(3) resolution). The entire 3D human atria were analyzed for wall thickness (0.4–11.7 mm), myofiber orientations, and transmural fibrosis (36.9% subendocardium; 14.2% midwall; 3.4% subepicardium). The 3D computational analysis revealed that a specific combination of wall thickness and fibrosis ranges were primarily present in the optically defined AF driver regions versus nondriver tissue. Finally, a 3D human heart–specific atrial computer model was developed by integrating 3D structural and functional mapping data to test AF induction, maintenance, and ablation strategies. This 3D model reproduced the optically defined reentrant AF drivers, which were uninducible when fibrosis and myofiber anisotropy were removed from the model. CONCLUSIONS: Our novel 3D computational high‐resolution framework may be used to quantitatively analyze structural substrates, such as wall thickness, myofiber orientation, and fibrosis, underlying localized AF drivers, and aid the development of new patient‐specific treatments. John Wiley and Sons Inc. 2017-08-22 /pmc/articles/PMC5586436/ /pubmed/28862969 http://dx.doi.org/10.1161/JAHA.117.005922 Text en © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Research
Zhao, Jichao
Hansen, Brian J.
Wang, Yufeng
Csepe, Thomas A.
Sul, Lidiya V.
Tang, Alan
Yuan, Yiming
Li, Ning
Bratasz, Anna
Powell, Kimerly A.
Kilic, Ahmet
Mohler, Peter J.
Janssen, Paul M. L.
Weiss, Raul
Simonetti, Orlando P.
Hummel, John D.
Fedorov, Vadim V.
Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo
title Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo
title_full Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo
title_fullStr Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo
title_full_unstemmed Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo
title_short Three‐dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural “Fingerprints” of Heart‐Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo
title_sort three‐dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart‐specific atrial fibrillation drivers in human heart ex vivo
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586436/
https://www.ncbi.nlm.nih.gov/pubmed/28862969
http://dx.doi.org/10.1161/JAHA.117.005922
work_keys_str_mv AT zhaojichao threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT hansenbrianj threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT wangyufeng threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT csepethomasa threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT sullidiyav threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT tangalan threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT yuanyiming threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT lining threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT brataszanna threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT powellkimerlya threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT kilicahmet threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT mohlerpeterj threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT janssenpaulml threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT weissraul threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT simonettiorlandop threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT hummeljohnd threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo
AT fedorovvadimv threedimensionalintegratedfunctionalstructuralandcomputationalmappingtodefinethestructuralfingerprintsofheartspecificatrialfibrillationdriversinhumanheartexvivo