Cargando…

Temporal degradation of data limits biodiversity research

Spatial and/or temporal biases in biodiversity data can directly influence the utility, comparability, and reliability of ecological and evolutionary studies. While the effects of biased spatial coverage of biodiversity data are relatively well known, temporal variation in data quality (i.e., the co...

Descripción completa

Detalles Bibliográficos
Autores principales: Tessarolo, Geiziane, Ladle, Richard, Rangel, Thiago, Hortal, Joaquin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587493/
https://www.ncbi.nlm.nih.gov/pubmed/28904766
http://dx.doi.org/10.1002/ece3.3259
Descripción
Sumario:Spatial and/or temporal biases in biodiversity data can directly influence the utility, comparability, and reliability of ecological and evolutionary studies. While the effects of biased spatial coverage of biodiversity data are relatively well known, temporal variation in data quality (i.e., the congruence between recorded and actual information) has received much less attention. Here, we develop a conceptual framework for understanding the influence of time on biodiversity data quality based on three main processes: (1) the natural dynamics of ecological systems—such as species turnover or local extinction; (2) periodic taxonomic revisions, and; (3) the loss of physical and metadata due to inefficient curation, accidents, or funding shortfalls. Temporal decay in data quality driven by these three processes has fundamental consequences for the usage and comparability of data collected in different time periods. Data decay can be partly ameliorated by adopting standard protocols for generation, storage, and sharing data and metadata. However, some data degradation is unavoidable due to natural variations in ecological systems. Consequently, changes in biodiversity data quality over time need be carefully assessed and, if possible, taken into account when analyzing aging datasets.