Cargando…

Process design of microdomains with quantum mechanics for giant pulse lasers

The power scaling of laser devices can contribute to the future of humanity. Giant microphotonics have been advocated as a solution to this issue. Among various technologies in giant microphotonics, process control of microdomains with quantum mechanical calculations is expected to increase the opti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Yoichi, Akiyama, Jun, Taira, Takunori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587561/
https://www.ncbi.nlm.nih.gov/pubmed/28878223
http://dx.doi.org/10.1038/s41598-017-10884-z
Descripción
Sumario:The power scaling of laser devices can contribute to the future of humanity. Giant microphotonics have been advocated as a solution to this issue. Among various technologies in giant microphotonics, process control of microdomains with quantum mechanical calculations is expected to increase the optical power extracted per unit volume in gain media. Design of extensive variables influencing the Gibbs energy of controlled microdomains in materials can realize desired properties. Here we estimate the angular momentum quantum number of rare-earth ions in microdomains. Using this process control, we generate kilowatt-level laser output from orientation-controlled microdomains in a laser gain medium. We also consider the limitations of current samples, and discuss the prospects of power scaling and applications of our technology. This work overturns at least three common viewpoints in current advanced technologies, including material processing based on magnetohydrodynamics, grain-size control of transparent polycrystals in fine ceramics, and the crystallographic symmetry of laser ceramics in photonics.