Cargando…

The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway

Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Abrar Ul Haq, Allende-Vega, Nerea, Gitenay, Delphine, Gerbal-Chaloin, Sabine, Gondeau, Claire, Vo, Dang-Nghiem, Belkahla, Sana, Orecchioni, Stefania, Talarico, Giovanna, Bertolini, Francesco, Bozic, Milica, Valdivielso, Jose M., Bejjani, Fabienne, Jariel, Isabelle, Lopez-Mejia, Isabel C., Fajas, Lluis, Lecellier, Charles-Henri, Hernandez, Javier, Daujat, Martine, Villalba, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587676/
https://www.ncbi.nlm.nih.gov/pubmed/28878225
http://dx.doi.org/10.1038/s41598-017-10339-5
_version_ 1783262035077758976
author Khan, Abrar Ul Haq
Allende-Vega, Nerea
Gitenay, Delphine
Gerbal-Chaloin, Sabine
Gondeau, Claire
Vo, Dang-Nghiem
Belkahla, Sana
Orecchioni, Stefania
Talarico, Giovanna
Bertolini, Francesco
Bozic, Milica
Valdivielso, Jose M.
Bejjani, Fabienne
Jariel, Isabelle
Lopez-Mejia, Isabel C.
Fajas, Lluis
Lecellier, Charles-Henri
Hernandez, Javier
Daujat, Martine
Villalba, Martin
author_facet Khan, Abrar Ul Haq
Allende-Vega, Nerea
Gitenay, Delphine
Gerbal-Chaloin, Sabine
Gondeau, Claire
Vo, Dang-Nghiem
Belkahla, Sana
Orecchioni, Stefania
Talarico, Giovanna
Bertolini, Francesco
Bozic, Milica
Valdivielso, Jose M.
Bejjani, Fabienne
Jariel, Isabelle
Lopez-Mejia, Isabel C.
Fajas, Lluis
Lecellier, Charles-Henri
Hernandez, Javier
Daujat, Martine
Villalba, Martin
author_sort Khan, Abrar Ul Haq
collection PubMed
description Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, augments usage of the glycolysis-produced pyruvate in the mitochondria increasing oxidative phosphorylation (OXPHOS). In several animal models, DCA decreases plasma cholesterol and triglycerides. Thus, DCA was used in the 70 s to treat diabetes mellitus, hyperlipoproteinemia and hypercholesterolemia with satisfactory results. However, the mechanism of action remained unknown and we describe it here. DCA increases LDLR mRNA and protein levels as well as LDL intake in several cell lines, primary human hepatocytes and two different mouse models. This effect is mediated by transcriptional activation as evidenced by H3 acetylation on lysine 27 on the LDLR promoter. DCA induces expression of the MAPK ERK5 that turns on the transcription factor MEF2. Inhibition of this ERK5/MEF2 pathway by genetic or pharmacological means decreases LDLR expression and LDL intake. In summary, our results indicate that DCA, by inducing OXPHOS, promotes ERK5/MEF2 activation leading to LDLR expression. The ERK5/MEF2 pathway offers an interesting pharmacological target for drug development.
format Online
Article
Text
id pubmed-5587676
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55876762017-09-13 The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway Khan, Abrar Ul Haq Allende-Vega, Nerea Gitenay, Delphine Gerbal-Chaloin, Sabine Gondeau, Claire Vo, Dang-Nghiem Belkahla, Sana Orecchioni, Stefania Talarico, Giovanna Bertolini, Francesco Bozic, Milica Valdivielso, Jose M. Bejjani, Fabienne Jariel, Isabelle Lopez-Mejia, Isabel C. Fajas, Lluis Lecellier, Charles-Henri Hernandez, Javier Daujat, Martine Villalba, Martin Sci Rep Article Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, augments usage of the glycolysis-produced pyruvate in the mitochondria increasing oxidative phosphorylation (OXPHOS). In several animal models, DCA decreases plasma cholesterol and triglycerides. Thus, DCA was used in the 70 s to treat diabetes mellitus, hyperlipoproteinemia and hypercholesterolemia with satisfactory results. However, the mechanism of action remained unknown and we describe it here. DCA increases LDLR mRNA and protein levels as well as LDL intake in several cell lines, primary human hepatocytes and two different mouse models. This effect is mediated by transcriptional activation as evidenced by H3 acetylation on lysine 27 on the LDLR promoter. DCA induces expression of the MAPK ERK5 that turns on the transcription factor MEF2. Inhibition of this ERK5/MEF2 pathway by genetic or pharmacological means decreases LDLR expression and LDL intake. In summary, our results indicate that DCA, by inducing OXPHOS, promotes ERK5/MEF2 activation leading to LDLR expression. The ERK5/MEF2 pathway offers an interesting pharmacological target for drug development. Nature Publishing Group UK 2017-09-06 /pmc/articles/PMC5587676/ /pubmed/28878225 http://dx.doi.org/10.1038/s41598-017-10339-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Khan, Abrar Ul Haq
Allende-Vega, Nerea
Gitenay, Delphine
Gerbal-Chaloin, Sabine
Gondeau, Claire
Vo, Dang-Nghiem
Belkahla, Sana
Orecchioni, Stefania
Talarico, Giovanna
Bertolini, Francesco
Bozic, Milica
Valdivielso, Jose M.
Bejjani, Fabienne
Jariel, Isabelle
Lopez-Mejia, Isabel C.
Fajas, Lluis
Lecellier, Charles-Henri
Hernandez, Javier
Daujat, Martine
Villalba, Martin
The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway
title The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway
title_full The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway
title_fullStr The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway
title_full_unstemmed The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway
title_short The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway
title_sort pdk1 inhibitor dichloroacetate controls cholesterol homeostasis through the erk5/mef2 pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587676/
https://www.ncbi.nlm.nih.gov/pubmed/28878225
http://dx.doi.org/10.1038/s41598-017-10339-5
work_keys_str_mv AT khanabrarulhaq thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT allendeveganerea thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT gitenaydelphine thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT gerbalchaloinsabine thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT gondeauclaire thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT vodangnghiem thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT belkahlasana thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT orecchionistefania thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT talaricogiovanna thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT bertolinifrancesco thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT bozicmilica thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT valdivielsojosem thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT bejjanifabienne thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT jarielisabelle thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT lopezmejiaisabelc thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT fajaslluis thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT lecelliercharleshenri thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT hernandezjavier thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT daujatmartine thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT villalbamartin thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT khanabrarulhaq pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT allendeveganerea pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT gitenaydelphine pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT gerbalchaloinsabine pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT gondeauclaire pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT vodangnghiem pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT belkahlasana pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT orecchionistefania pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT talaricogiovanna pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT bertolinifrancesco pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT bozicmilica pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT valdivielsojosem pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT bejjanifabienne pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT jarielisabelle pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT lopezmejiaisabelc pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT fajaslluis pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT lecelliercharleshenri pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT hernandezjavier pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT daujatmartine pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway
AT villalbamartin pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway