Cargando…
The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway
Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587676/ https://www.ncbi.nlm.nih.gov/pubmed/28878225 http://dx.doi.org/10.1038/s41598-017-10339-5 |
_version_ | 1783262035077758976 |
---|---|
author | Khan, Abrar Ul Haq Allende-Vega, Nerea Gitenay, Delphine Gerbal-Chaloin, Sabine Gondeau, Claire Vo, Dang-Nghiem Belkahla, Sana Orecchioni, Stefania Talarico, Giovanna Bertolini, Francesco Bozic, Milica Valdivielso, Jose M. Bejjani, Fabienne Jariel, Isabelle Lopez-Mejia, Isabel C. Fajas, Lluis Lecellier, Charles-Henri Hernandez, Javier Daujat, Martine Villalba, Martin |
author_facet | Khan, Abrar Ul Haq Allende-Vega, Nerea Gitenay, Delphine Gerbal-Chaloin, Sabine Gondeau, Claire Vo, Dang-Nghiem Belkahla, Sana Orecchioni, Stefania Talarico, Giovanna Bertolini, Francesco Bozic, Milica Valdivielso, Jose M. Bejjani, Fabienne Jariel, Isabelle Lopez-Mejia, Isabel C. Fajas, Lluis Lecellier, Charles-Henri Hernandez, Javier Daujat, Martine Villalba, Martin |
author_sort | Khan, Abrar Ul Haq |
collection | PubMed |
description | Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, augments usage of the glycolysis-produced pyruvate in the mitochondria increasing oxidative phosphorylation (OXPHOS). In several animal models, DCA decreases plasma cholesterol and triglycerides. Thus, DCA was used in the 70 s to treat diabetes mellitus, hyperlipoproteinemia and hypercholesterolemia with satisfactory results. However, the mechanism of action remained unknown and we describe it here. DCA increases LDLR mRNA and protein levels as well as LDL intake in several cell lines, primary human hepatocytes and two different mouse models. This effect is mediated by transcriptional activation as evidenced by H3 acetylation on lysine 27 on the LDLR promoter. DCA induces expression of the MAPK ERK5 that turns on the transcription factor MEF2. Inhibition of this ERK5/MEF2 pathway by genetic or pharmacological means decreases LDLR expression and LDL intake. In summary, our results indicate that DCA, by inducing OXPHOS, promotes ERK5/MEF2 activation leading to LDLR expression. The ERK5/MEF2 pathway offers an interesting pharmacological target for drug development. |
format | Online Article Text |
id | pubmed-5587676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-55876762017-09-13 The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway Khan, Abrar Ul Haq Allende-Vega, Nerea Gitenay, Delphine Gerbal-Chaloin, Sabine Gondeau, Claire Vo, Dang-Nghiem Belkahla, Sana Orecchioni, Stefania Talarico, Giovanna Bertolini, Francesco Bozic, Milica Valdivielso, Jose M. Bejjani, Fabienne Jariel, Isabelle Lopez-Mejia, Isabel C. Fajas, Lluis Lecellier, Charles-Henri Hernandez, Javier Daujat, Martine Villalba, Martin Sci Rep Article Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, augments usage of the glycolysis-produced pyruvate in the mitochondria increasing oxidative phosphorylation (OXPHOS). In several animal models, DCA decreases plasma cholesterol and triglycerides. Thus, DCA was used in the 70 s to treat diabetes mellitus, hyperlipoproteinemia and hypercholesterolemia with satisfactory results. However, the mechanism of action remained unknown and we describe it here. DCA increases LDLR mRNA and protein levels as well as LDL intake in several cell lines, primary human hepatocytes and two different mouse models. This effect is mediated by transcriptional activation as evidenced by H3 acetylation on lysine 27 on the LDLR promoter. DCA induces expression of the MAPK ERK5 that turns on the transcription factor MEF2. Inhibition of this ERK5/MEF2 pathway by genetic or pharmacological means decreases LDLR expression and LDL intake. In summary, our results indicate that DCA, by inducing OXPHOS, promotes ERK5/MEF2 activation leading to LDLR expression. The ERK5/MEF2 pathway offers an interesting pharmacological target for drug development. Nature Publishing Group UK 2017-09-06 /pmc/articles/PMC5587676/ /pubmed/28878225 http://dx.doi.org/10.1038/s41598-017-10339-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Khan, Abrar Ul Haq Allende-Vega, Nerea Gitenay, Delphine Gerbal-Chaloin, Sabine Gondeau, Claire Vo, Dang-Nghiem Belkahla, Sana Orecchioni, Stefania Talarico, Giovanna Bertolini, Francesco Bozic, Milica Valdivielso, Jose M. Bejjani, Fabienne Jariel, Isabelle Lopez-Mejia, Isabel C. Fajas, Lluis Lecellier, Charles-Henri Hernandez, Javier Daujat, Martine Villalba, Martin The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway |
title | The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway |
title_full | The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway |
title_fullStr | The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway |
title_full_unstemmed | The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway |
title_short | The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway |
title_sort | pdk1 inhibitor dichloroacetate controls cholesterol homeostasis through the erk5/mef2 pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587676/ https://www.ncbi.nlm.nih.gov/pubmed/28878225 http://dx.doi.org/10.1038/s41598-017-10339-5 |
work_keys_str_mv | AT khanabrarulhaq thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT allendeveganerea thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT gitenaydelphine thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT gerbalchaloinsabine thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT gondeauclaire thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT vodangnghiem thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT belkahlasana thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT orecchionistefania thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT talaricogiovanna thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT bertolinifrancesco thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT bozicmilica thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT valdivielsojosem thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT bejjanifabienne thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT jarielisabelle thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT lopezmejiaisabelc thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT fajaslluis thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT lecelliercharleshenri thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT hernandezjavier thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT daujatmartine thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT villalbamartin thepdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT khanabrarulhaq pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT allendeveganerea pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT gitenaydelphine pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT gerbalchaloinsabine pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT gondeauclaire pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT vodangnghiem pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT belkahlasana pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT orecchionistefania pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT talaricogiovanna pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT bertolinifrancesco pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT bozicmilica pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT valdivielsojosem pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT bejjanifabienne pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT jarielisabelle pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT lopezmejiaisabelc pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT fajaslluis pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT lecelliercharleshenri pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT hernandezjavier pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT daujatmartine pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway AT villalbamartin pdk1inhibitordichloroacetatecontrolscholesterolhomeostasisthroughtheerk5mef2pathway |