Cargando…

A novel role of the soybean clock gene LUX ARRHYTHMO in male reproductive development

The evening complex of ELF4-ELF3-LUX proteins is an integral component of a plant circadian clock. LUX ARRHYTHMO (LUX) is one of the key components of the evening complex, and that play a key role in circadian rhythms and flowering. Here, we report that diverged soybean LUX has the additional role i...

Descripción completa

Detalles Bibliográficos
Autores principales: Liew, Lim Chee, Singh, Mohan B., Bhalla, Prem L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587693/
https://www.ncbi.nlm.nih.gov/pubmed/28878247
http://dx.doi.org/10.1038/s41598-017-10823-y
Descripción
Sumario:The evening complex of ELF4-ELF3-LUX proteins is an integral component of a plant circadian clock. LUX ARRHYTHMO (LUX) is one of the key components of the evening complex, and that play a key role in circadian rhythms and flowering. Here, we report that diverged soybean LUX has the additional role in male reproductive development. We studied diurnal and circadian rhythms of soybean LUX (GmLUXa, GmLUXb, and GmLUXc) using qRT-PCR, and show its nuclear localisation by particle bombardment. Yeast-two hybrid (Y2H) studies indicate that both GmLUXb and GmLUXc form an evening complex with GmELF4b and GmELF3a, respectively. Ectopic expression of GmLUXb in Arabidopsis lux mutants can complement functions of AtLUX, whereas GmLUXc generates novel phenotypes of serrated leaves, stunted plants, shortened anther filament, and low seed set. Overall, our results suggest that the LUX gene has diverged in soybean where GmLUXb and GmLUXc share the role to control flowering time, but GmLUXc has evolved to regulate anther filament growth and seed set by regulating the Gibberellin hormone biosynthesis pathway.